
A problem in Euclidean Geometry

Michael Atiyah

I describe below an elementary problem in Euclidean (or Hyperbolic) geometry which remains
unsolved more than 10 years after it was first formulated. There is a proof for n = 3 and
(when the ball is the whole of 3-space) when n = 4. There is strong numerical evidence for
n 6 30.

Let (x1, x2, ...xn) be n distinct points inside the ball of radius R in Euclidean 3-space. Let
the oriented line xixj meet the boundary 2-sphere in a point tij (regarded as a point of the
complex Riemann sphere (C ∪∞)). Form the complex polynomial pi, of degree n−1, whose
roots are tij : this is determined up to a scalar factor. The open problem is

Conjecture 1 For all (x1, ..., xn) the n polynomials pi are linearly independent.

Conjecture 1 is equivalent to the non-vanishing of the determinant D of the matrix of coeffi-
cients of the pi. In fact there is a natural way of normalizing this determinant (independent
of the choice of scalar factors) so that D becomes a continuous function of (x1, ..., xn) which
is SL(2, C) - invariant (using the ball model of hyperbolic 3-space) Conjecture 1 can now be
refined to

Conjecture 2 |D| ≥ 1 with equality only for collinear points.

There are other versions of this conjecture, of which the most appealing and general involves
2 ellipsoids S, S ′ in 3-space with S inside S ′. Replacing the 2-sphere above by an ellipsoid
and, taking a sequence of points xi inside S, we get two determinants D,D′. The third
conjecture (which implies Conjecture 2) is

Conjecture 3 |D′| > |D|

More details and background can be found in the references below (but Conjecture 3 is new).
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About Poincaré Duality

by Jacob Lurie

Let M be a manifold of dimension d, and let q : E → M be a Serre fibration of topological
spaces, equipped with a section s : M → E. For each open subset U ⊆ M , let Sectc(U) denote
the space of maps M → E which are sections of q and which agree with s outside of a compact
subset of M .

Principle 1 (Nonabelian Poincare Duality). If the fibers of q are (d − 1)-connected, then

Sectc(M) can be realized as the homotopy colimit of the diagram of spaces {Sectc(U)}, where
U ranges over those open subsets of M which can be written as a finite disjoint union of disks.

Example 2. Let A be an abelian group and let E be the product of M with an Eilenberg-
MacLane space K(A, n). Then we have canonical isomorphisms πi Sectc(M) ≃ Hn−i

c
(M ;A). If

M is an oriented manifold of dimension d ≤ n, then the homotopy groups of the homotopy col-
imit of the diagram {Sectc(U)} can be computed as the homology Hi+d−n(M ;A), and Principle
1 recovers the statement of Poincare duality for the manifold M .

Example 3. Let G be a compact Lie group, let M be a compact manifold, and let E be the
product of M with the classifying space of G. Then Sectc(M) can be interpreted as a classifying
space for G-bundles on the manifold M . Principle 1 implies that if G is simply connected and
M has dimension ≤ 4 (or if G is connected and M has dimension ≤ 2), then we can reconstruct
the homotopy type of this classifying space by studying G-bundles which have been trivialized
outside a finite subset of M .

Problem 4 (Nonabelian Verdier Duality?). Formulate an analogue of Principle 1 which does

not require the assumption that the map q : E → M be a Serre fibration.
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DEGENERATION OF NONABELIAN HODGE STRUCTURES

CARLOS SIMPSON

The Hodge structure on the cohomology of a complex Kähler manifold has turned
out to be one of the most fertile and useful structures in complex geometry. Thanks
to Wilfried Schmid’s work, we have a very detailed and precise understanding of
how the Hodge structures degenerate when the variety becomes singular, leading
to a wide array of applications in many fields.

More recently, it has appeared useful to consider the “nonabelian cohomology” of
a variety, whose first basic incarnation is the moduli space of flat bundles. A natural
question is to try to generalize Wilfried’s structure theorems on degenerations, to
the nonabelian cohomology space. This was the subject of numerous discussions
with Ludmil Katzarkov and Tony Pantev in the late 1990’s. Results in this direction
could have applications for the study of families of varieties in diverse contexts.

Suppose (S, 0) is a pointed curve and X → S is a family of curves, whose
general fibers are smooth and whose special fiber X0 is reduced with simple normal
crossings. Then we can consider the moduli space MDR(X/S) → S of sheaves
with integrable connections on the fibers. Over a general point s ∈ S, the fiber
MDR(Xs) parametrizes flat bundles. It has a nonabelian Hodge structure where
the analogue of the Hodge metric is Hitchin’s hyperkähler metric. It degenerates to
a moduli spaceMDR(X0) of torsion-free sheaves onX0 with logarithmic connections
satisfying a compatibility condition at the crossings.

Problem: Understand the degeneration of the nonabelian Hodge structures on
MDR(Xs) as s → 0. We would like to have analogues of the nilpotent and SL2

orbit theorems, and the norm estimates. These should give asymptotic information
about the degeneration of the hyperkähler metric. There should be an analogue of
the Clemens-Schmid exact sequence relating flat bundles on X0 and the residue of
the nonabelian Gauss-Manin or isomonodromic deformation connection. Look for
a limiting nonabelian mixed Hodge structure.

One of the difficulties is to understand what happens near points in MDR(X0)
parametrizing torsion-free sheaves which are not locally free at the singularities.
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Understanding restriction to K

David A. Vogan, Jr.∗

Department of Mathematics

Massachusetts Institute of Technology

April 15, 2013

Suppose G is a real reductive Lie group, with maximal compact subgroup
K. The representation theory of K is well-understood and well-behaved: K̂
is a countable discrete set consisting of finite-dimensional representations
(δ, Eδ). If (π, V ) is a quasisimple irreducible representation of G, Harish-
Chandra proved that each irreducible representation of K appears at most
finitely often in V ; so there is a multiplicity function

mV : K̂ → N, mV (δ) = dimHomK(Eδ, V ).

Here is one way to study these multiplicity functions.

Theorem 1. For every δ ∈ K̂, there is a unique tempered irreducible repre-

sentation I(δ) having real infinitesimal character, and unique lowest K-type

δ. The functions mI(δ) form a Z-basis of the span of the multiplicity func-

tions mV . That is, for any V there is an expression

mV =
∑

δ∈K̂

aV (δ)mI(δ),

with aV (δ) ∈ Z, and only finitely many aV (δ) not equal to zero.

This is based on Schmid’s results in [6]. A proof for linear G is in [7]. If
δ0 is a lowest K-type of V , then aV (δ0) = 1. The other terms in the sum
involve strictly “larger” δ, in the ordering of K̂ defining lowest. The Hecht-
Schmid proof of Blattner’s conjecture in [3] provides explicit formulas for the
functions mI(δ), and the Kazhdan-Lusztig conjectures allow us to calculate
the integers aV ; so this theorem makes it possible to compute all of the

∗The author was supported in part by NSF grant DMS-0967272.
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functions mV . Nevertheless we do not fully understand these functions; the
point of the problem below is to seek more geometric understanding.

Write K(C) and g for the complexifications of K and Lie(G). Write

N ∗
θ = cone of nilpotent elements in (g/k)∗;

this is an affine algebraic variety on which K(C) acts with finitely many
orbits. If M is a K(C)-equivariant coherent sheaf on N ∗

θ
, then the space

ΓM decomposes as a direct sum of irreducible representations of K exactly
as we explained above for V ; so we get a multiplicity function

mM : K̂ → N, mM(δ) = dimHomK(Eδ,ΓM).

These multiplicity functions have a geometric character that is not evident in
the representation-theoretic ones mV . But they include the representation-
theoretic ones.

Proposition. Suppose V is an irreducible quasisimple representation of G.

Then there is K(C)-equivariant sheaf M(V ) on N ∗
θ
, with the property that

mV = mM(V ).

(This equality of multiplicity functions is a consequence of a much more
precise relationship between V and M(V ), examined in detail in [8].) Here
is a version of Theorem 1 for the geometric setting.

Theorem 2. Suppose O is an orbit of K(C) on N ∗
θ
, and L is an irreducible

K(C)-equivariant vector bundle on O. Let L be any equivariant coherent

sheaf on O that restricts to L. Then the multiplicity functions functions m
L

form a Z-basis of the span of the multiplicity functions mM. That is, for

any K(C)-equivariant coherent sheaf M there is an expression

mM =
∑

L

aM(L)m
L
,

with aM(L) ∈ Z, and only finitely many aM(L) not equal to zero.

This is easy. If L0 is a bundle supported on a component O0 of the sup-
port of M, then the coefficient aM(L0) is a nonnegative integer independent
of all choices of coherent extensions. The other terms in the sum involve
lower-dimensional orbits in the support of M.

What has a little more content is

Proposition. The representation-theoretic multiplicity functions mV have

exactly the same span as the geometric ones mM. In particular, the two

bases {mI(δ)} and {m
L
} are related by integer change-of-basis matrices.
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Finally we can state a problem.

Open Problem. Describe as explicitly as possible a bijection between K̂
and the set of irreducible K(C)-equivariant bundles L, with the property
that the change-of-basis matrix between {mI(δ)} and {m

L
} is lower trian-

gular with respect to the ordering of K̂ defining lowest K-types. Give an
algorithm for computing this change-of-basis matrix.

For complex groups, a version of this problem was posed by Lusztig in
[4], and solved by Bezrukavnikov in [2]. The version here (with a more
explicit bijection) is due to Achar [1] in the case of GL(n,C). Earlier work
of Ostrik [5] is related.

For real groups, there are a number of additional difficulties. First, we
did not specify how to choose L; making the wrong choice will interfere
with lower triangularity. Second, the ordering defining lowest K-types is no
longer a total order, and a single irreducible representation can have more
than one lowest K-type. This difficulty partitions K̂ into finite subsets,
each with cardinality a small power of 2 (bounded by the split rank of G).
The precise desideratum is that each of these sets of representations δ should
correspond to a set of the same size of bundles L; the correspondence should
make the change-of-basis matrix block lower triangular.

Computing this change of basis matrix would in particular compute the
associated variety of any irreducible representation. This is an “asymptotic”
description of the restriction to K, providing a useful complement to the
complete and explicit formulas due to Hecht and Schmid.
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Characters and modules 

James Arthur 

 

There are two different ways to classify representations of compact connected Lie 

groups.  One is the construction by harmonic analysis of irreducible characters.  It is 

due to H. Weyl, in his original work that culminated in the famous Weyl character 

formula. (See [W, p. 377-385] for an elementary description for the case of compact 

unitary groups.)  The other is the algebraic construction of irreducible modules by 

highest weights.  This is best known as part of the theory of complex semisimple Lie 

algebras, but it is easily transformed to a classification for compact groups.  The two 

theories each give the classification of irreducible representations in terms of their 

highest weights. 

 

The problem here, which has been posed by Dihua Jiang, is to understand a similar 

dichotomy for automorphic representations.  I am posting it because it appears to 

be quite natural, and because I believe that it is very important.  The question also 

bears upon an offhand comment of Wilfried from last November,  

 

“… but what about the modules!” 

 

or words to that effect.  In [A], we describe a classification of automorphic 

representations of orthogonal and symplectic groups.  It is based on a comparison of 

the trace formula with its stabilization (and is still conditional on the stabilization of 

the twisted trace formula for GL(N), part of work in progress by Moeglin and 

Waldspurger).  The comparison of trace formulas is a theory that rests ultimately on 

the characters of representations.  The theta correspondence is a complementary 

theory based on the actual modules of representations.  It has the advantage of 

being very explicit.  The disadvantage is that it does not directly classify 

representations into local and global packets from which one can deduce 

multiplicities.  In fact, it does not give an exhaustion theorem for the representations 

it constructs.  However, initial results suggest that one might be able to have the 

advantages of both theories by using them together. 

 

The problem of comparing the theta correspondence with the endoscopic 

classification seems to be quite complex.  It might require sustained efforts from a 

number of mathematicians.  For a more detailed description of the problem, with 

the initial results mentioned above, we refer the reader to [J]. 
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Arithmeticity (or not) of Monodromy

Peter Sarnak

April 23, 2013

In 1974 Griffiths and Schmid [1] asked whether monodromy groups of families of varieties acting on
cohomology are arithmetic or not. The problem remains largely open, even for well known explicit
examples. One case is that of the the families of Calabi-Yau three-folds, which have received much
attention starting with the paper of Candelas-Parks et al. Of the well known 14 such families, 7 are
known to be not arithmetic (Brav and Thomas [3]), while 3 are arithmetic (Singh -Venkataramana
[5]) and 4 remain undecided. Besides deciding the remaining 4 cases the question is:

What is the geometric significance of being arithmetic?

Some further comments on this problem taken from Peter Sarnak’s e-mail correspondence. Sarnak

writes:

1. My interest in whether such groups are arithmetic or “thin” (the image of the monodromy
group H is contained in the integer points G(Z) of its Zariski closure. I call the group H thin

if it is not finite index in the latter group, and arithmetic otherwise). All this is explained
in my “Notes on Thin Matrix groups.” While the main “expansion theorem” allows one to
proceed in many cases without knowing whether the group is thin or not (and only knowing
the Zariski closure—just as with most arithmetic geometric applications), in the diophantine
orbit world one does want to know more. E.g if the group happens to be arithmetic then one
can often use automorphic forms, Galois cohomology and other methods to resolve a problem.
These are much more powerful than the substitute theory for “thin” groups.

2. A second reason to be interested in this is curiosity. That is, can one really compute a
monodromy group? The first question after the Zariski closure is whether it is thin or not.
The general question of whether the group is thin or not has no decision procedure. The
situation is very similar to Hilbert’s 10-th problem for decision procedures for diophantine
problems. That is the local obstructions are the finite quotients of the (say, monodromy)
group H. These can be identical to a determinable congruence subgroup K ⊂ G(Z) even
when H is of infinite index in G(Z). So in this case one passes all local tests; so now, how
to tell if H is this unique congruence subgroup K or is thin? If it is K, one might certify it
is so by exhibiting the generators of K as products of the generators of H (which is, in fact,
then manner in which H is given). The analogue of this in Hilbert 11 is that one gives an
integral point on the variety demonstrating it has a point. The problematic step is giving
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a certificate that H is thin. One method (which I view as the analogue of the method of
descent) is to show that the generators of H play ping pong on some set. This means that
there is a way of seeing expressions in the generators are getting more complex and hence
of understanding the structure of H with its generators combinatorially. This can often be
combined with cohomological methods to give a certificate that a group is thin. The trouble
with this is it hard to show that the generators do, in fact, play ping pong. In some examples
this can be done and this is what Brav and Thomas did for the Dwork n = 4 case. My talk
will be about a certificate for being thin, which is a bit like the Brauer-Manin obstruction.
It applies to the hypergeometric monodromy groups n F(n− 1) when their Zariski closure is
orthogonal of signature (n− 1, 1) and it is quite robust.

3. I don’t have any good ideas about the geometric significance of being thin or not (and I
would love to hear some ideas). However my feeling is that being thin is exotic enough that
in some examples it is the reason it carries precious information (somehow if the the group
were arithmetic the information gleaned would have been extracted by other means). To back
this up note that the Dwork Family used by Taylor et al (with n equal to 4 and higher) is I
expect thin. For n = 4 this is proved by Brav-Thomas in [3]. Also the Candelas case—which
set off mirror symmetry story—is thin. Kontsevich has some ideas coming from dynamics
connected to variation of Hodge structures that might explain the significance of thin. See
the report on his recent lecture [4].
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Feynman Diagrams

by Matvei Libine (joint with with Igor Frenkel)

Feynman diagrams are a pictorial way of describing integrals predicting possible outcomes
of interactions of subatomic particles in the context of quantum field physics. As the number of
variables that are being integrated out increases, the integrals become more and more difficult to
compute. But in the cases when the integrals can be computed, the accuracy of their prediction
is amazing. Many of these diagrams corresponding to real-world scenarios result in integrals
that are divergent in mathematical sense. Physicists have a collection of competing techniques
called “renormalization” of Feynman integrals which “cancel out the infinities” coming from
different parts of the diagrams. After renormalization, calculations using Feynman diagrams
match experimental results with very high accuracy. However, these renormalization techniques
appear very suspicious to mathematicians and attract criticism from physicists as well. For ex-
ample, do you get the same result if you apply a different technique? If the results are different,
how do you choose the “right” technique? Or, if the results are the same, what is the reason for
that? Most of these questions will be resolved if one finds an intrinsic mathematical meaning of
Feynman diagrams, most likely as projectors onto irreducible components of certain represen-
tations. A number of mathematicians already work on this problem of finding a mathematical
interpretation of Feynman diagrams, mostly in the setting of algebraic geometry. Recently
published book “Feynman Motives” by M. Marcolli, [1] contains a summary of these algebraic-
geometric developments as well as a comprehensive list of references. However, there is a strong
evidence that at least some Feynman diagrams should have a representation-theoretic interpre-
tation. The answer might be as simple and elegant as projectors onto irreducible components
of certain representations of U(2, 2).
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What mathematics is really behind the distributional

Γ-factors?

Stephen D. Miller∗

Rutgers University
miller@math.rutgers.edu

May 11, 2013

This problem is motivated by my joint work with Wilfried Schmid on constructing L-
functions via automorphic distributions (see [6–8]). An interesting – and poorly understood
– aspect of our method is the structure of its archimedean integrals. In every case examined
thus far, there is some change of coordinates that splits them into products of integrals of
the form

Gδ(s) :=

∫

R

e2πix sgn(x)δ dx = iδ
ΓR(s+ δ)

ΓR(1− s+ δ)
, δ ∈ {0, 1} , (1)

where ΓR(s) = π−s/2Γ( s
2
) is the factor that famously accompanies ζ(s) in its functional

equation. This identity is first proved by a contour shift when 0 < Re s < 1 (where it
conditionally converges), and then extends to s ∈ C by meromorphic continuation.

Despite the uniformity of the answers we obtain, the computations have been performed
by ad hoc combinatorial methods. I’d like to describe some examples here in the hopes that
an appropriate algebraic context can be found to explain them. For that reason all integrals
below will be expressed formally, without concern for convergence.

The first two examples are related to specific Γ-factor computations, while the last arose
in understanding the existence and uniqueness of Whittaker functions on the group GL(r,R).
Both have vague resemblances to formulas from cluster algebras in [3]. What is really going
on behind this, making it work?

Example 1: Rankin-Selberg tensor product on GL(r)×GL(r + 1).

Let N and N− be the subgroups of r × r unipotent upper and lower triangular matrices in
GL(r,R), respectively. Let ψ(n) = e2πi(n1,2+n2,3+···+nr−1,r) denote the standard nondegenerate
character of the unipotent subgroup N , where n = (ni,j) ∈ N . The boundary Whittaker

∗Supported by NSF grant DMS-1201362.
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distribution B = Br for parameters λ = (λ1, . . . , λr) ∈ Cr and δ = (δ1, . . . , δr) ∈ (Z/2Z)r is
the distribution on GL(r,R) characterized by the transformation law

B(ngtn−) = ψ(n)B(g)χρ−λ,δ(t) , (2)

where g ∈ GL(r,R), n ∈ N , t is diagonal, n− ∈ N−, ρ = ( r−1
2
, r−3

2
, . . . , 1−r

2
), and

χρ−λ,δ(diag(t1, . . . , tr)) =
∏

i≤ r

|ti|
ρi−λi sgn(ti)

δi .

This formula completely describes B(ntn−) = ψ(n)χρ−λ,δ(t) on the open Bruhat cell of G,
where it actually restricts to a function.

Consider the embedding j : GL(r,R) →֒ GL(r + 1,R) into the upper left corner of
(r+1)× (r+1) matrices. It has an open orbit on the product of flag varieties for these two
groups. Let f1 ∈ GL(r,R) and f2 ∈ GL(r + 1,R) be an arbitrary point in this orbit. The
distributional archimedean integral that arises for the GL(r) × GL(r + 1) Rankin-Selberg
convolution is (analogously to [4])

∫

B
−,r

Br(b−f1)Br+1(j(b−)f2) | det b−|
s , (3)

where B−,r represents the lower triangular Borel subgroup of GL(r). After a rational change

of coordinates on B−,r, (3) formally splits into a product of r(r+1)
2

integrals of the form (1).
This gives half of the Γ-factors in the functional equation, the other half coming from the
opposite side of the functional equation.

Since it is a bit lengthy to describe this coordinate change in general, we illustrate it here

for some low rank cases, starting with r = 3. Write b− =
(

a 0 0
b c 0
d e f

)

and take f1 = I3, f2 =
(

0 0 1 1
0 1 0 1
1 0 0 1
0 0 0 1

)

. For simplicity assume that δ = (0, 0, . . . , 0) (which does not change the difficulty

of the calculation). Then B3(b−f1) = |a|3/2−λ1 |c|1/2−λ2 |f |−1/2−λ3 . The factor involving B4 is

B4

(

0 0 a a
0 c b b+c
f e d d+e+f
0 0 0 1

)

= e2πi(d+e+f)B4

(

0 0 a 0
0 c b 0
f e d 0
0 0 0 1

)

= e2πi(d+e+f)B4

( acf

be−cd
−ae

d
a a

0 c− be
d

b b+c

0 0 d d+e+f
0 0 0 1

)

(4)

by (2) (using an LU decomposition). This can be written as an explicit product involving
powers of the diagonal entries, and an exponential of the sum of the ratio of each superdiag-
onal entry divided by the diagonal entry immediately beneath it. The successive changes of
variables b 7→ b+ cd/e, a 7→ ab, b 7→ bd, c 7→ ce then converts the integral into a product of 6
Gδ-integrals from (1).

For r = 4, f1 = I4 while f2 =

(

0 0 0 1 1
0 0 1 0 1
0 1 0 0 1
1 0 0 0 1
0 0 0 0 1

)

. Writing b− =

(

a 0 0 0
b c 0 0
d e f 0
g h i j

)

, in this case the

changes of variables are b 7→ b + cfg−cdi
fh−ei

, d 7→ d + eg/h, e 7→ e + fh/i, followed by a 7→ ab,
b 7→ bd, c 7→ ce, d 7→ dg, e 7→ eh, f 7→ fi.
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Notice that the addition by shifts serves to simplify determinants of minors in b− into

monomials. For example, the first change of variables for r = 4 simplifies det
(

b c 0
d e f
g h i

)

to

b · det
(

e f
h i

)

, while the other shifts do something simpler for 2 × 2 determinants. The last
phase involves multiplying each variable by the one immediately below it in the matrix, in a
certain sequence. In general, the change of variables goes through the matrix in a particular
order, and changes an entry in a manner in which simplifies some of the minors of the matrix.
It then proceeds to change other entries, sometimes affecting ones which have already been
altered.

Example 2: Exterior Square L-function on GL(2r).

This example is taken from our paper [8, §4], which gives a general description of a coordinate
change for matrices such as



















c1,1 0 0 0 0 c1,1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 c1,1

c2,1 c2,2 0 0 0 c2,1+c2,2 0 0 0 0 z1,1
0 0 0 0 0 0 0 0 0 c2,2 c2,1

c3,1 c3,2 c3,3 0 0 c3,1+c3,2+c3,3 0 0 0 z2,2 z2,1
0 0 0 0 0 0 0 0 c3,3 c3,2 c3,1

c4,1 c4,2 c4,3 c4,4 0 c4,1+c4,2+c4,3+c4,4 0 0 z3,3 z3,2 z3,1
0 0 0 0 0 0 0 c4,4 c4,3 c4,2 c4,1

c5,1 c5,2 c5,3 c5,4 c5,5 c5,1+c5,2+c5,3+c5,4+c5,5 0 z4,4 z4,3 z4,2 z4,1
0 0 0 0 0 0 c5,5 c5,4 c5,3 c5,2 c5,1
0 0 0 0 0 1 z5,5 z5,4 z5,3 z5,2 z5,1



















.

The goal here is again to factor this matrix as ntn− for n ∈ N , t diagonal, and n− ∈ N−,
with an accompanying change of variables so that the superdiagonal entries in n as well
as the entries of t have simple forms. This allows for the computation of Γ-factors for the
exterior square L-functions.

Various shifts of variables are performed on the zi,j and then the ci,j in order to convert
various minors into monomials of the variables. In this particular situation, the determi-
nant of the bottom-right 9× 9 block can be expanded by minors as z1,1∆1 + (c2,1 + c2,2)∆2,
where ∆1 and ∆2 are determinants of subblocks. We change variables z1,1 7→ z1,1 − (c2,1 +
c2,2)∆2/∆1, so that the determinant of this 9× 9 block simplifies to z1,1∆1. Similar changes
of variables are done in turn for the square blocks whose bottom row is the bottom row
of the matrix, and whose top right corner is z2,1, z2,2, z3,1, z3,2, z3,3, z4,1, z4,2, z4,3, and z4,4
(in this order). After this is complete, similar changes of variables are then made for
c5,1, c5,2, c5,3, c5,4, c4,1, c4,2, c4,3, c3,1, c3,2, and c2,1, in order. Note that adjusting the ci,j’s al-
ters the previously-changed zi,j in the process. The order here is different than in the
Rankin-Selberg example, though ultimately for the same purpose of simplifying an integral.

Other distributional pairings give integrals which can also be calculated in terms of
similar shifts. For example, Janet Chen’s Ph.D. thesis [2] works out an integral on Sp(4),
while Brandon Bate’s Ph.D. [1] thesis works out one on the exceptional group G2.
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Example 3: Existence and uniqueness of Whittaker functions.

This last example originally arose in a different application, though it shares some similarities
with the previous two examples. It concerns the algebraic geometry of Schubert cells for
GL(r,R). The change of variables described below gives a desingularization of the largest
Schubert cell, from which a very short proof of the existence and uniqueness of Whittaker
functions (originally due to [9,10]) can be given using our notion of a distribution vanishing
to infinite order [5].

Consider the following ordering on the coordinates ni,j of matrices n ∈ N ,

O : (1, 2) ≻ (2, 3) ≻ (1, 3) ≻ (3, 4) ≻ (2, 4) ≻ (1, 4) ≻ (4, 5) ≻ · · · , (5)

which is the lexicographic order on the pair (−j, i) (this is not the same notion as the
lexicographic ordering of a root system from Lie theory). We extend O in the obvious way
to the positive roots α of G, corresponding to the coordinates ni,j. Let B− ⊂ GL(r,R) be
the subgroup of lower triangular matrices, and let wlong be the long Weyl group element,
realized as the n× n identity matrix with its columns reversed.

Theorem 6. (Miller-Schmid, 2008) There exists a birational map R

{(ui,j) | 1 ≤ i < j ≤ r}
R

−→ {(ni,j) | 1 ≤ i < j ≤ r}

such that

(i) R is smooth, of maximal rank, on (R∗)d, where d = dim(N) = r(r−1)
2

(ii) via R, the element in the (i, i + 1)-st position in the projection of wlongnB− onto N
modulo B− corresponds to

∑r−i
k=1

1
uk,i+k

(iii) via R, the invariant measure
∏

1≤i<j≤r dni,j on N corresponds to
∏

1≤i<j≤r u
j−i−1dui,j

(iv) via R, the zero sets of the functions
∏

i≤k<j ui,j, 1 ≤ k ≤ r−1, define the codimension-
one Schubert cells of G.

This birational map R is defined in terms of the entries of the matrix

wn =









1
1 nr−1,r

1 nr−2,r−1 nr−2,r

. .
.

. .
. ...

...
1 n2,3 ··· n2,r−1 n2,r

1 n1,2 n1,3 ··· n1,r−1 n1,r









. (7)

For each entry nα = ni,j, i < j, in this matrix, let Pα = Pi,j denote the set of rectilinear
paths through its entries which begin at ni,r and end at either nj−1,j or nj,j+1, and which
move only in upward and leftward steps as they pass through the matrix. For any such
path p through the matrix wn, let u(p) denote the product of uγ, over all γ for which nγ is
traversed by the path. The explicit formula for the rational map is given as follows:

ni,j =

∑

p∈Pi,j
u(p)

uj,j+1uj,j+2 · · · uj,r
. (8)
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For example, for r = 3 the matrix wn corresponds under R to




0 0 1
0 1 u2,3
1 u1,3u1,2+u1,3u2,3

u2,3
u1,3 u2,3



, (9)

while for r = 4 it corresponds to










0 0 0 1
0 0 1 u3,4
0 1 u2,4(u2,3+u3,4)

u3,4
u2,4 u3,4

1 u1,4(u1,2u1,3+u1,3u2,3+u2,3u2,4)

u2,3u2,4

u1,4(u1,3u2,3+u2,3u2,4+u2,4u3,4)

u3,4
u1,4 u2,4 u3,4











. (10)

The entries in the rightmost column always come from the sole path going straight up,
meaning

ni,r =
∏

j≥i

uj,r. (11)

This change of variables is a special case of a more general one that applies to any Schubert
cell of GL(r).

To conclude: what mathematics is behind these paths and changes of variables?
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Tautological classes on the moduli space of K3 surfaces

Alina Marian

We denote by Kℓ the moduli stack of quasipolarized K3 surfaces (X, H) of degree

H2 = 2ℓ, and let

π : X → Kℓ

be the universal surface, equipped with the universal quasipolarization H → X .

The Hodge line bundle

V =
(

R2π⋆OX

)−1

gives rise to a natural divisor class

λ = c1(V ),

generating a subring 〈λ〉 ⊂ A⋆(Kℓ) in the Chow of Kℓ. In [GK], the authors consider

the Chern classes c1 = π⋆λ and c2 of the relative cotangent bundle Ω1
X/Kℓ

, and calculate

that

π⋆ cm
2 ∈ 〈λ〉, for all m.

Beyond the universal surface X , we may contemplate more general geometric structures

over Kℓ, and could ask: do they give rise to new natural classes in the Chow ring of Kℓ

or does the λ-ring entirely capture the tautological cycle structure of Kℓ?

As a concrete example, for a fixed integer n, we consider the relative Hilbert scheme

of n points

π : X [n] → Kℓ.

(For simplicity we let π denote the projection to Kℓ in all considered contexts.) We let

D ⊂ X [n] be the natural diagonal divisor of subschemes whose support points are not all

distinct. In other words, fiberwise over a quasipolarized (X, H), D consists of the length

n zero-dimensional subschemes of X supported at at most n − 1 distinct points of X.

We let δ ∈ A1(X [n]) be the corresponding Chow class, and ask

Question 1. Are the pushforwards π⋆ δm for m > 2n in the λ-ring?

The Hilbert scheme can be viewed as the relative moduli stack of rank 1 torsion

free sheaves of trivial determinant and second Chern number −n. More generally, it

is natural to consider spaces of higher rank sheaves on a K3, as the surface varies in

moduli. We restrict attention to the open substack K◦

ℓ ⊂ Kℓ where the line bundle H
over the universal surface is ample, and construct

M [v] → K◦

ℓ ,
1



2

the moduli space of H-semistable sheaves with rank r, determinant dH and Euler char-

acteristic a−r over the fibers of π : X ◦ → K◦

ℓ . Over a fixed polarized K3 surface (X, H),

the moduli space consists of sheaves F with Mukai vector

v(F ) = chF
√

toddX = r + dH + a[pt] ∈ H⋆(X, Z).

We may consider an additional Mukai vector w = s + eH + b[pt] ∈ H⋆(X, Z), comple-

mentary in the sense that

χ(v · w) = 0 on X.

We form the second relative moduli space M [w] → K◦

ℓ , and note that the product

π : M [v] ×K◦

ℓ
M [w] → K◦

ℓ

comes endowed with a canonical Brill-Noether locus

(1) {(X,H, E, F ) so that H
0(X, E ⊗L F ) 6= 0} ⊂ M [v] ×K◦

ℓ
M [w],

which is expected divisorial. The corresponding line bundle Θ → M [v] ×K◦

ℓ
M [w] is in

any case always defined. We ask

Question 2. Is the Chern character ch (Rπ⋆Θ) in the ring generated by the Hodge class

λ = −c1(R
2π⋆OX ◦) ?
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