Talk is based on results obtained together with M. Movshev.

Main goal - analysis of maximally supersymmetric gauge (SUSY YM) theories

Main tools - noncommutative geometry, supergeometry, noncommutative supergeometry, L_{∞}, A_{∞} -algebras

A. Connes (NC geometry), F. Berezin (supergeometry), J. Stasheff (A_{∞} -algebras)

We give a formulation of SUSY YM theories and other YM theories in algebraic terms.

We use it, in particular, to study supersymmetric deformations of these theories. space *⇐*⇒ algebra of functions

compact topological space \iff continuous functions (Gelfand-Naimark)

smooth manifold *⇐*⇒ smooth functions

formal n-dimensional manifold \iff formal power series $\mathbb{C}[[x^1,...,x^n]]$

formal (n, m)-dimensional supermanifold $\Leftrightarrow \mathbb{C}[[x^1, ..., x^n]] \otimes \Lambda(\xi^1, ..., \xi^m)$

NC space \Leftrightarrow associative algebra

NC superspace $\iff \mathbb{Z}_2$ -graded assosiative algebra

supermanifold⇒ supercommutative associative algebra

vector field on NC space \Leftrightarrow derivation of algebra

odd vector field on NC superspace $\Leftarrow\Rightarrow$ odd derivation of \mathbb{Z}_2 -graded algebra

Q-manifold \Leftrightarrow a supermanifold equipped with odd vector field Q obeying $\{Q,Q\}=0$

NC Q-space \iff differential \mathbb{Z}_2 -graded algebra \iff \mathbb{Z}_2 -graded algebra equipped with an odd derivation d obeying $d^2=0$

Quasiisomorphism of NC Q-spaces $\Leftarrow\Rightarrow$ homomorphism of differential \mathbb{Z}_2 -graded algebras that generates an isomorphism on homology

 L_{∞} algebra \iff formal Q-manifold \iff a differential on the algebra $\mathbb{C}[[x^1,...,x^n]]\otimes \Lambda(\xi^1,...,\xi^m)$

differential Lie algebra $\Rightarrow L_{\infty}$ algebra

zero locus of vector field $Q \Leftarrow \Rightarrow$ solutions to Maurer-Cartan equations for L_{∞} algebra (=usual MC equations in the case of differential Lie algebra)

 A_{∞} algebra \Leftrightarrow formal noncommutative Q-manifold \Leftrightarrow a differential on completion $\mathbb{C} << x^1,...,x^n,\xi^1,...,\xi^m >>$ of free non-unital algebra $\mathbb{C} < x^1,...,x^n,\xi^1,...,\xi^m >$ generated by \mathbb{Z}_2 -graded vector space with even coordinates $x^1,...,x^n$ and odd coordinates $\xi^1,...,\xi^m$

differential associative algebra $\Rightarrow A_{\infty}$ algebra

 A_{∞} algebra $A \Rightarrow L_{\infty}$ algebra L(A)

We consider an associative algebra A equipped with an action of Lie algebra L.

One can define a connection (gauge field) on E with respect to L as a set of linear operators $\mathcal{D}_X:E\to E$ depending linearly on $X\in L$ and satisfying an analog of the Leibniz rule

$$\mathcal{D}_X(a \cdot e) = \partial_X(a) \cdot e + a \cdot \mathcal{D}_X e \tag{1}$$

for any $a \in \mathcal{A}$ and any $e \in E$.

A curvature of connection \mathcal{D}_X is a twoform on L:

$$F_{XY} = [\mathcal{D}_X, \mathcal{D}_Y] - \mathcal{D}_{[X,Y]}. \tag{2}$$

 F_{XY} takes values in the algebra $End_{\mathcal{A}}E$ of endomorphisms of the \mathcal{A} -module E.

If the module E is projective a trace on the algebra \mathcal{A} induces a trace on $End_{\mathcal{A}}E$ and we can construct Yang-Mills action functional by choosing some invariant metric on L

$$S_{YM}(\mathcal{D}_m) = -\frac{1}{4} \operatorname{Tr} F_{mn} F^{mn} \tag{3}$$

where F_{mn} are curvature components in some basis in L.

One can consider gauge fields interacting with other fields (with matter)

Maximally supersymmetric Yang-Mills theory can be constructed in the case when the Lie algebra L acting on \mathcal{A} is ten-dimensional commutative Lie algebra. Let E denote a projective module over A

To supersymmetrize the action functional (??) we introduce fermionic fields χ^{α} that take values in $End_{\mathcal{A}}E$ and carry a ten-dimensional spinor index $\alpha=1,\ldots,16$, i.e. $\chi\in End_{\mathcal{A}}E\times \Pi S$.

We denote by S the space of irreducible spinor representation of SO(10), Π stands for parity reversion, Γ^m are Dirac matrices,

Then maximally supersymmetric Yang-Mills action functional can be written as

$$S_{SYM}(\mathcal{D}_m, \chi_{\alpha}) = -\frac{1}{4} \operatorname{Tr} F_{mn} F^{mn} +$$

$$\frac{1}{2} \operatorname{Tr} \chi^{\alpha} \Gamma_{\alpha\beta}^{m} [\mathcal{D}_{m}, \chi^{\beta}] . \tag{4}$$

The action functional (??) is invariant under the supersymmetry transformations

$$\delta_{\epsilon}(\mathcal{D}_{m}) = \epsilon^{\alpha} (\Gamma_{m})_{\alpha\beta} \chi^{\beta},$$

$$\delta_{\epsilon}(\chi^{\alpha}) = \frac{1}{2} (\sigma^{mn})^{\alpha}{}_{\beta} \epsilon^{\beta} F_{mn}$$
(5)

as well as under a trivial supersymmetry transformations

$$\tilde{\delta}_{\epsilon}(\mathcal{D}_m) = 0 \,, \quad \tilde{\delta}_{\epsilon}(\chi^{\alpha}) = \epsilon^{\alpha} \,.$$
 (6)

Here ϵ^{α} is a constant spinor, i.e. a spinor proportional to the unit endomorphism.

The action (??) is also invariant under gauge transformations parametrized by an endomorphism ϕ :

$$V_{\phi}(\mathcal{D}_m) = [\mathcal{D}_m, \phi], \qquad V_{\phi}(\chi^{\alpha}) = [\chi^{\alpha}, \phi].$$

The most important cases:

10D SUSY YM theory

 \mathcal{A} =algebra of functions on \mathbb{R}^{10}

Its reductions to four, one and zero dimensions:

N=4 four-dimensional SUSY YM theory

A =algebra of functions on R^4

BFSS model

 \mathcal{A} =algebra of functions on \mathbb{R}^1 ; gauge fields are matrix-valued functions on a line

IKKT model

 $\mathcal{A} = \mathbb{C}$; gauge fields are matrices

SUSY YM theory on NC torus

 $\mathcal{A}=$ algebra of functions on torus with starproduct= C^* algebra with unitary generators U_k and relations $U_kU_l=e^{i\theta_{kl}}U_lU_k$ Applications of NC geometry to string/M-theory

SUSY YM theory on NC torus can be obtained from BFSS or IKKT model by means of compactification (Connes- Douglas -Schw)

Morita equivalence of NC tori \Rightarrow T-duality (Rieffel-Schw,Schw)

Noncommutative instantons (Nekrasov-Schw)

BPS states in NC SUSY YM (Konechny-Schw)

Background independence (Pioline-Schw, Seiberg-Witten)

Algebraic formulation of SUSY YM and more general YM theories in BV formalism in terms of differential associative algebras and A_{∞} -algebras

Classical system in Batalin-Vilkovisky (BV) formalism \Leftrightarrow solution to classical master eqution $\{S,S\}$ =0 on odd symplectic manifold \Leftrightarrow odd symplectic Q-manifold \Rightarrow L_{∞} algebra with odd inner product

 A_{∞} -algebra $A \Rightarrow A_{\infty}$ -algebra $A \otimes Mat_n \Rightarrow L_{\infty}$ algebra $L(A \otimes Mat_n)$

 A_{∞} -algebra A with inner product $\Rightarrow L_{\infty}$ algebra $L(A \otimes Mat_n)$ with inner product \Rightarrow action functional in BV-formalism

Gauge theories can be obtained this way from appropriate A_{∞} -algebras

SUSY YM theory can be obtained from differential associative algebra with inner product ⇒ BV-action functional can be written in Chern-Simons form

IKKT theory in BV formalism

pure spinor $u \Leftarrow \Rightarrow u \Gamma^m u = 0$

space of pure spinors OGr(10,5) = total space of line bundle over SO(10)/U(5)

Berkovits algebra B= algebra of polynomial functions $p(u,\theta)$ with differential $d=u\frac{d}{d\theta}$

Here u is a pure spinor and $\theta \in \Pi S$ is an odd spinor

Koszul dual to quadratic algebra B is quasi-isomorphic to algebra SYM

Definition of algebra SYM

$$SYM =$$

$$= \mathbb{C} < A_1, \dots, A_{10}, \chi^1, \dots, \chi^{16} > /I(YM_k, Dirac_\alpha)$$

$$YM_k = [A_i, [A_i, A_k]] - \frac{1}{2} \Gamma_{\alpha\beta}^k \{ \chi^{\alpha}, \chi^{\beta} \}$$
 (7)

$$Dirac_{\alpha} = -\Gamma^{i}_{\alpha\beta}[A_{i}, \chi^{\beta}] \tag{8}$$

Representations of SYM \iff solutions to SUSY YM equations of motion

Infinitesimal deformations of A_{∞} algebra $A \Leftarrow \Rightarrow$ Hochschild cohomology HH(A,A)

Infinitesimal deformations of A_{∞} algebra with invariant inner product \iff cyclic cohomology (Penkava-Schw)

Equivariant generalizations of these statements are used to analyze SUSY deformations of SUSY YM