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A. Physicists made conjectures based on phys-

ical principles, or formal mathematical ar-

guments.

Localizations on infinite dimensional spaces:

Path integrals. (Witten’s proposed proof

of mirror conjecture, 1990)

B. The mathematical proofs depend on Lo-

calization Techniques on various finite di-

mensional moduli spaces.

Both have interesting symmetry to work with.

Application of Atiyah-Bott formula to counting

rational curves in the quintic threefold: Kont-

sevich, Ellingsrud-Stromme, Givental, Lian-Liu-

Yau.



(1). Mirror Principle: a much more general

principle to count curves of arbitrary genus.

Lian, K. Liu, Yau,

Asian J. Math. 1 (1997), no.4, 729–763

Asian J. Math. 3 (1999), no.1, 109–146

Asian J. Math. 3 (1999), no.4, 771–800

Surv. Differ. Geom. VII, 475–496

(2). Proof of the Hori-Vafa Formula

(Hori-Vafa, hep-th/0002222)

Lian, C.H. Liu, K. Liu, Yau, math.AG/0111256.

(3). Proof of the Mariño-Vafa Formula

(Mariño-Vafa, Contemp.Math.310,185–224)

C.-C. Liu, K. Liu, J. Zhou, math.AG/0306434.

(4). SYZ Conjecture and Duality:

Strominger, Yau, Zaslow, Nuclear Phys. B 479

(1996), no. 1-2, 243–259.



Common and Key technique:

Equivariant cohomology

H∗
T(X) = H∗(X ×T ET )

where ET is the universal bundle of T .

Example: ES1 = P∞. If S1 acts on Pn by

λ · [Z0, . . . , Zn] = [λw0Z0, . . . , λwnZn],

then

HS1(CPn;Q) ∼= Q[H, α]/〈(H−w0α) · · · (H−wnα)〉

Atiyah-Bott Localization Formula:

For ω ∈ H∗
T(X) an equivariant cohomology class,

we have

ω =
∑
E

iE∗
(

i∗Eω

eT (E/X)

)
.

where E runs over all connected components

of T fixed points set.



Functorial Localization Formula:

f : X → Y equivariant map. F ⊂ Y a fixed

component, E ⊂ f−1(F ) fixed components in

f−1(F ). Let f0 = f |E, then

For ω ∈ H∗
T(X) an equivariant cohomology class,

we have identity on F :

f0∗[
i∗Eω

eT (E/X)
] =

i∗F (f∗ω)

eT (F/Y )
.

This formula will be applied to various settings

to prove the conjectures from physics:

It is used to push computations on complicated

moduli space to simpler moduli space.



Remarks:

1. Consider the diagram:

H∗
T (X)

f∗−→ H∗
T(Y )

↓ iE
∗ ↓ iF

∗

H∗
T (E)

f0∗−→ H∗
T (F ) .

The functorial localization formula is like

Riemann-Roch with the inverted equivari-

ant Euler classes of the normal bundle as

”weights”, as the Todd class for the RR.



2. The mirror formulas, which are essentially

given by integrals of the generating series

of the left hand side of the functorial local-

ization formula, is like a ”graded” version

of the index formula:

The numerator of the right hand side re-

placed by a hypergeometric term, a simple

equivariant class, through mirror transfor-

mations.

Grading: the degrees of the moduli spaces

of stable maps.

3. The main theme of mirror principle is to

work out the numerator. The denominator

is easily known if the linearized moduli is

known.

Otherwise more work needed: to be dis-

cussed more in the Hori-Vafa formula.



4. (Atiyah-Witten) Formally applied to loop

spaces and the natural S1-action, one gets

the index formula: Chern characters are

equivariant forms on loop space, and the

Â genus is the inverse of the equivariant

Euler class of the normal bundle of X in

its loop space LX:

eT (X/LX)−1 ∼ Â(X),

which follows from the infinite product⎛
⎝ ∏

n 
=0

(x + n)

⎞
⎠−1

∼ x

sinx
.



5. (Kefeng Liu, Comm. Math. Phys. 174,

1995, no. 1, 29–42) The “normalized”

product∏
m,n

(x + m + nτ) = 2q
1
8 sin(πx)

·
∞∏

j=1

(1 − qj)(1 − e2πixqj)(1 − e−2πixqj),

where q = e2πiτ . This is Eisenstein’s for-

mula, which is a double loop space ana-

logue of the Atiyah-Witten observation. This

is the basic Jacobi θ-function. Formally

this gives the Â class of the loop space, and

the Witten genus, the index of the Dirac

operator on the loop space:

eT (X/LLX) ∼ Ŵ (X),

where LLX is the double loop space, the

space of maps from S1 × S1 into X.



6. A K-theory version of the above formula

also holds, interesting applications expected.

7. The proofs of such formulas depend on

Atiyah-Bott localization, or the Atiyah-Bott-

Segal-Singer fixed point formula.



(1). Mirror Principle:

Compute characteristic numbers on moduli spaces

of stable maps ⇐ Hypergeometric type series:

Counting curves: Euler numbers.

Hirzebruch multiplicative classes, total Chern

classes.

Marked points and general GW invariants.

We hope to develop a ”black-box” method

which makes easy the computations of the char-

acteristic numbers and the GW-invariants on

the moduli space of stable maps:

Starting data =⇒ Mirror Principle =⇒ Closed

Formulas for the invariants.



General set-up: X: Projective manifold.

Mg,k(d, X): moduli space of stable maps of

genus g and degree d with k marked points

into X, modulo the obvious equivalence.

Points in Mg,k(d, X) are triples: (f ;C; x1, · · · , xk):

f : C → X: degree d holomorphic map;

x1, · · · , xk: k distinct smooth points on the

genus g curve C.

f∗([C]) = d ∈ H2(X, Z): identified as inte-

gral index (d1, · · · , dn) by choosing a basis of

H2(X, ,Z) (dual to the Kahler classes).



Virtual fundamental cycle of Li-Tian, (Behrend-

Fantechi): [Mg,k(d, X)]v, a homology class of

the expected dimension

2 (c1(TX)[d] + (dimC X − 3)(1 − g) + k)

on Mg,k(d, X).

Consider the case k = 0 first. The expected

dimension is 0 if X is a Calabi-Yau 3-fold.

Mirror Principle motivated by physics: (P.

Candelas, X. de la Ossa, P. Green, L. Parkes)

The A-model potential of a Calabi-Yau 3-fold

M is give by

F0(T ) =
∑

d∈H2(M ;Z)

K0
d ed·T ,

where T = (T1, . . . , Tn) are coordiates of Kahler

moduli of M , and K0
d is the genus zero, degree

d GW-invariant of M .



Mirror conjecture asserts that there exists a

mirror Calabi-Yau 3-fold M ′ with B model po-

tential G(T ), which can be computed by period

integrals, such that

F(T ) = G(t),

where t accounts for coordinates of complex

moduli of M ′. The map t �→ T is the mirror

map.

In the toric case, the period integrals are solu-

tions to GKZ-system (Gelfand-Kapranov-Zelevinsky

hypergeometric series).

Starting data:

V : concavex bundle on X, direct sum of a

positive and a negative bundle on X.

V induces sequence of vector bundles V
g
d on

Mg,0(d, X): H0(C, f∗V ) ⊕ H1(C, f∗V ).



b: a multiplicative characteristic class.

(So far for all application in string theory, b is

the Euler class.)

Problem: Compute K
g
d =

∫
[Mg,0(d,X)]v b(V g

d ).

Compute

F (T, λ) =
∑
d, g

K
g
d λg ed·T

in terms of hypergeometric type series.

Here λ, T = (T1, · · · , , Tn) formal variables.

Key ingredients for the proof of the Mirror

Principle:

(1). Linear and non-linear moduli spaces;

(2). Euler data and Hypergeometric Euler data

(HG Euler data).



Non-linear moduli: M
g
d(X) = stable map mod-

uli of degree (1, d) and genus g into P1 × X

= {(f, C) : f : C → P1 × X} with C a genus g

(nodal) curve, modulo obvious equivalence.

Linearized moduli: Wd for toric X. (Witten,

Aspinwall-Morrison):

Example: Pn, [z0, · · · , zn]

Wd: [f0(w0, w1), · · · , fn(w0, w1)]

fj(w0, w1): homogeneous polynomials of de-

gree d.

Simplest compactification.

Lemma:(LLY+Li; c.f. Givental for g = 0)

There exists an explicit equivariant collapsing

map

ϕ : M
g
d(P

n) −→ Wd.



M
g
d(X), embedded into M

g
d(P

n), is very ”singu-

lar” and complicated. But Wd smooth and sim-

ple. The embedding induces a map of M
g
d(X)

to Wd.

Functorial localization formula connects the com-

putations of mathematicians and physicists. Push

all computations on the nonlinear moduli to

the linearized moduli.

Mirror symmetry formula = Comparison of com-

putations on nonlinear and linearized moduli!?

Balloon manifold X: Projective manifold with

torus action and isolated fixed points. (intro-

duced by Goresky-Kottwitz-MacPherson)

H = (H1, · · · , Hk)

a basis of equivariant Kahler classes.

(1). H(p) 
= H(q) for any two fixed points.



(2). TpX has linearly independent weights for

any fixed point p.

Theorem: Mirror principle holds for balloon

manifolds for any concavex bundles.

Remarks: All homogeneous and toric man-

ifolds are balloon manifolds. For g = 0 we

can identify HG series explicitly. Higher genus

needs more work.

1. For toric manifolds and g = 0 =⇒ all mirror

conjectural formulas from physics.

2. Grassmannian: Hori-Vafa formula.

3. Direct sum of positive line bundles on Pn

(including the Candelas formula): Two inde-

pendent approaches: Givental, Lian-Liu-Yau.

Ideas of Proof:



Apply functorial localization formula to ϕ, the

collapsing map and the pull-back class ω =

π∗b(V g
d ), where

π : M
g
d(X) → Mg,0(d, X)

is the natural projection.

Introduce the notion of Euler Data, which

naturally appears on the right hand side of the

functorial localization formula:

Qd = ϕ!(π
∗b(V g

d ))

which is a sequence of polynomials in equivari-

ant cohomology rings of the linearized moduli

spaces (or restricted to X) with simple quadratic

relations.

From functorial localization formula we prove

that:



Knowing Euler data Qd ≡ knowing the K
g
d.

There is another much simpler Euler data, the

HG Euler data Pd which coincides with Qd on

the ”generic” part of the nonlinear moduli.

The quadratic relations + coincidence deter-

mine the Euler data uniquely up to certain de-

gree.

Qd always have the right degree for g = 0.

Mirror transformation used to reduce the de-

grees of the HG Euler data Pd.

Remark: Both the denominator and the nu-

merator in the HG series are equivariant Euler

classes. Especially the denominator is exactly

from the localization formula. Easily seen from

the functorial localization formula.



Remark: The quadratic relation of Euler data,

which naturally comes from gluing and functo-

rial localization on the A-model side, is closely

related to special geometry, and is similar to

the Bershadsky-Cecotti-Ooguri-Vafa’s holomor-

phic anomaly equation on the B-model side.

Such relation can determine the polynomial

Euler data up to certain degree.

It is interesting task to use special geometry to

understand the mirror principle computations,

especially the mirror transformation as a coor-

dinate change.

Mariño-Vafa formula is needed to determine

the hypergeometric Euler data for higher genus

computations in mirror principle.



Mariño-Vafa formula which comes from Chern-

Simons and String theory duality, and the ma-

trix models for Chern-Simons indicate that mir-

ror principle may have matrix model descrip-

tion.

Example: CY quintic in P4,

Pd =
∏5d

m=0(5κ − mα)

with α weight from S1 action on P1, and κ

generator of equivariant cohomology ring of

Wd.

Starting data: V = O(5) on X = P4 and the

hypergeometric series (taking α = −1) is:

HG[B](t) = eH t∑∞
d=0

∏5d
m=0(5H+m)∏d
m=1(H+m)5

ed t,

H: hyperplane class on P4; t: parameter.



Introduce

F(T ) = 5
6T3 +

∑
d>0 K0

d ed T .

Algorithm: Take expansion in H:

HG[B](t) = H{f0(t)+f1(t)H+f2(t)H
2+f3(t)H

3}.

Candelas Formula: With T = f1/f0,

F(T ) =
5

2
(
f1
f0

f2
f0

− f3
f0

).

(proved by Givental, Lian-Liu-Yau)



Example: X, toric manifold; g = 0.

D1, .., DN : T -invariant divisors

V = ⊕iLi, c1(Li) ≥ 0 and c1(X) = c1(V ).

b(V ) = e(V )

A(T ) =
∑

K0
d ed·T .

HG Euler series: generating series of the HG

Euler data.

B(t) = e−H·t∑
d
∏

i
∏〈c1(Li),d〉

k=0 (c1(Li) − k)

×
∏

〈Da,d〉<0
∏−〈Da,d〉−1

k=0 (Da+k)∏
〈Da,d〉≥0

∏〈Da,d〉
k=1 (Da−k)

ed·t.



Mirror Principle =⇒ There are explicitly com-

putable functions f(t), g(t), which define the

mirror map, such that∫
X

(
efB(t) − e−H·Te(V )

)
= 2A(T )−∑Ti

∂A(T )

∂Ti

where T = t + g(t).

Easily solved for A(T ).

Note the (virtual) equivariant Euler classes in

the HG series B(t).



In general we want to compute:

K
g
d,k =

∫
LTg,k(d,X)

∏k
j=1 ev∗jωj · b(V g

d )

where ωj ∈ H∗(X).

Form a generating series

F (t, λ, ν) =
∑

d,g,k K
g
d,kedtλ2gνk.

Ultimate Mirror Principle: Compute this se-

ries in terms of explicit HG series!

The classes induce Euler data: Euler data en-

code the geometric structure of the stable map

moduli.



Example: Consider open toric CY, say O(−3) →
P2. V = O(−3). Let

Qd =
∑

g≥0 ϕ!(π
∗eT (V g

d )λ2g.

The corresponding HG Euler data is given ex-

plicitly by

Pd J(κ, α, λ)J(κ − dα,−α, λ).

Where Pd is exactly the genus 0 HG Euler data

and J is generating series of Hodge integrals

(sum over all genus): degree 0 Euler data.

Euler data includes computations of all Gromov-

Witten invariants and more general. Some

closed formulas can be obtained....

Mirror principle holds!



Recent Results:

(1) Refined linearized moduli for higher genus:

A-twisted moduli stack AMg(X) of genus g

curves associated to a smooth toric variety X,

induced from the gauge linear sigma model

(GLSM) of Witten.

A morphism from a curve of genus g into X

corresponds a triple (Lρ, uρ, cm)ρ,m, where each

Lρ is a line bundle pulled back from X, uρ is

a section of Lρ satifying a nondegeneracy con-

dition, and cm gives condition to compare the

sections uρ in different line bundles Lρ. (David

Cox, The functor of a smooth toric variety,

Tohoku Math. J. (2) 47 (1995), no. 2, 251–

262.)



AMg
d(X) is the moduli of such data. It is an

Artin stack, fibered over the moduli space of

quasi-stable curves. (C.-H. Liu, K. Liu, Yau,

On A-twisted moduli stack for curves from

Witten’s gauged linear sigma models,

math.AG/0212316.)

(2) Open mirror principle: Open string the-

ory: counting holomorphic discs with boundary

inside a Lagrangian submanifold; more gener-

ally counting number of open Riemann sur-

faces with boundary in Lagrangian submani-

fold. Linearized moduli space being constructed

which gives a new compactification of the mod-

uli. (C.-H. Liu-K. Liu-Yau).



(2). Proof of the Hori-Vafa Formula.

This is refined mirror principle for Grassman-

nian.

Problem: No known good linearized moduli.

Solution: We use the Grothendieck quot scheme

to play the role of the linearized moduli. The

method gives a proof of the Hori-Vafa formula.

(Lian-C.-H. Liu-K. Liu-Yau, 2001, Bertram et

al 2003.)

The existence of linearized moduli made easy

the computations for toric manifolds. Let

ev : M0,1(d, X) → X

be evaluation map, and c the first Chern class

of the tangent line at the marked point. One



of the key ingredients for mirror formula is to

compute:

ev∗[ 1
α(α−c)] ∈ H∗(X)

or more precisely the generating series

HG[1]X(t) = e−tH/α∑∞
d=0 ev∗[ 1

α(α−c)] edt.

Remark: Assume the linearized moduli exists.

Then functorial localization formula applied to

the collpasing map: ϕ : Md → Nd, immedi-

ately gives the expression as hypergeometric

denominator.



Example: X = Pn, then we have ϕ∗(1) = 1,

functorial localization:

ev∗[ 1
α(α−c)] = 1∏d

m=1(x−mα)n+1

where the denominators of both sides are equiv-

ariant Euler classes of normal bundles of fixed

points. Here x denotes the hyperplane class.

For X = Gr(k, n), no explicit linearized moduli

known. Hori-Vafa conjectured a formula for

HG[1]X(t) by which we can compute this series

in terms of those of projective spaces:

Hori-Vafa Conjecture:

HG[1]Gr(k,n)(t) = e(k−1)π
√−1σ/α 1∏

i<j(xi−xj)
·

∏
i<j(α

∂
∂xi

−α ∂
∂xj

)|ti=t+(k−1)π
√−1HG[1]P(t1, · · · , tk)



where P = Pn−1 × · · · × Pn−1 is product of k

copies of the projective spaces. Here σ is the

generator of the divisor classes on Gr(k, n) and

xi the hyperplane class of the i-th copy Pn−1:

HG[1]P(t1, · · · , tk) =
∏k

i=1 HG[1]P
n−1

(ti).

Idea of Proof:

We use another smooth moduli, the Grothendieck

quot-scheme Qd to play the role of the lin-

earized moduli, and apply the functorial local-

ization formula, and a general set-up.

Step 1: Plücker embedding: τ : Gr(k, n) →
PN induces embedding of the nonlinear moduli

Md of Gr(k, n) into that of PN . Composite

with the collapsing map gives us a map

ϕ : Md → Wd



into the linearized moduli space Wd of PN .

On the other hand the Plücker embedding also

induces a map:

ψ : Qd → Wd.

Lemma: The above two maps have the same

image in Wd: Imψ = Imϕ.

And all the maps are equivariant with respect

to the induced circle action from P1.

Step 2: Analyze the fixed points of the cir-

cle action induced from P1. In particular we

need the distinguished fixed point set to get

the equivariant Euler class of its normal bun-

dle.



The distinguished fixed point set in Md is:

M0,1(d,Gr(k, n))

with equivariant Euler class of its normal bun-

dle: α(α − c), and ϕ restricted to ev.

Lemma: The distinguished fixed point set in

Qd is a union: ∪sE0s, where each E0s is a fiber

bundle over Gr(k, n) with fiber given by flag

manifold.

It is a complicated work to determine the fixed

point sets E0s and the weights of the circle

action on their normal bundles.

Step 3: Let p denote the projection from E0s

onto Gr(k, n). Functorial localization formula,

applied to ϕ and ψ, gives us



Lemma: We have equality on Gr(k, N):

ev∗[ 1
α(α−c)] =

∑
s p∗[ 1

eT (E0s/Qd)
]

where eT (E0s/Qd) is the equivariant Euler class
of the normal bundle of E0s in Qd.

Step 4: Compute p∗[ 1
eT (E0s/Qd)

]. (LLLY 2001,

Bertram, Ciocan-Fontanine, B. Kim 2003)

Note that

eT (TQ|E0s
− TE0s) = eT (TQ|E0s

)/eT(TE0s).

Both eT (TQ|E0s
) and eT (TE0s) can be written

down explicitly in terms of the universal bun-
dles on the flag bundle E0s = Fl(m1, · · · , mk, S)
over Gr(r, n), here S is the universal bundle on
the Grassmannian.

The push-forward by p from Fl(m1, · · · , mk, S)
to Gr(r, n) is done by a family localization for-
mula of Atiyah-Bott: sum over Weyl groups



along the fiber which labels the fixed point

sets.

The final formula of degree d is given by

p∗[ 1
eT (E0s/Qd)

] = (−1)(r−1)d

∑
(d1,...,dr)

d1+...+dr=d

∏
1≤i<j≤r(xi−xj+(di−dj)α)∏

1≤i<j≤r(xi−xj)
∏r

i=1
∏di

l=1(xi+lα)n
.

x1, ...xr are the Chern roots of S∗.

Remark: Similar formula for general Flag man-

ifolds can be worked out along the same line

(LLLY).



(3). Proof of the Mariño-Vafa formula.

To compute mirror formula for higher genus,

we need to compute Hodge integrals (i.e. in-

tersection numbers of λ classes and ψ classes)

on the moduli space of stable curves Mg,h.

The Hodge bundle E is a rank g vector bundle

over Mg,h whose fiber over [(C, x1, . . . , xh)] is

H0(C, ωC). The λ classes are defined by

λi = ci(E) ∈ H2i(Mg,h;Q).

The cotangent line T ∗
xi

C of C at the i-th marked

point xi gives a line bundle Li over Mg,h. The

ψ classes are defined by

ψi = c1(Li) ∈ H2(Mg,h;Q).



Define

Λ∨
g (u) = ug − λ1ug−1 + · · · + (−1)gλg.

Mariño-Vafa formula: Generating series of triple

Hodge integrals

∫
Mg,h

Λ∨
g (1)Λ∨

g (τ)Λ∨
g (−τ − 1)∏h

i=1(1 − µiψi)
,

given by close formulas of finite expression in

terms of representations of symmetric groups:



Conjectured from large N duality between Chern-
Simons and string theory:

Conifold transition:

conifold X{(
x y
z w

)
∈ C4 : xw − yz = 0

}

deformed conifold T ∗S3{(
x y
z w

)
∈ C4 : xw − yz = ε

}

(ε real positive number)

resolved conifold X̃ = O(−1) ⊕O(−1) → P1

{
([Z0, Z1],

(
x y
z w

)
) ∈ P1 × C4 :

(x, y) ∈ [Z0, Z1]
(z, w) ∈ [Z0, Z1]

}

X̃ ⊂ P1 × C4

↓ ↓
X ⊂ C4



Witten 92: The open topological string the-

ory on the N D-branes on S3 of T ∗S3 is equiv-

alent to U(N) Chern-Simons gauge thoery on

S3.

Gopakumar-Vafa 98, Ooguri-Vafa 00: The

open topological string theory on the N D-

branes on S3 of the deformed conifold is equiv-

alent to the closed topological string theory on

the resolved conifold X̃.



Mathematical Consequence:

〈Z(U, V )〉 = exp(−F (λ, t, V ))

U : holonomy of the U(N) Chern-Simons gauge
field around the a knot K ⊂ S3; V : U(M)
matrix

〈Z(U, V )〉: Chern-Simons knot invariants of K.

F (λ, t, V ): Generating series of the open Gromov-
Witten invariants of (X̃, LK), where LK is a
Lagrangian submanifold of the resolved coni-
fold X̃ “canonically associated to” the knot K.

t’Hooft large N expansion, and canonical iden-
tifications of parameters similar to mirror for-
mula.

Special case: When K is the unknot, 〈Z(U, V )〉
was computed in the zero framing by Ooguri-
Vafa and in any framing τ ∈ Z by Mariño-Vafa.



Comparing with Katz-Liu’s computations of

F (λ, t, V ), Mariño-Vafa conjectured a striking

formula about triple Hodge integrals in terms

of representations and combinatorics of sym-

metric groups. The framing in Mariño-Vafa’s

computations corresponds to choice of the cir-

cle action on the pair (X̃, Lunknot) in Katz-Liu’s

localization computations. Both choices are

parametrized by an integer.

Mariño-Vafa formula:

Geometric side:

For every partition µ = (µ1 ≥ · · ·µl(µ) ≥ 0),

define triple Hodge integral:

Gg,µ(τ) = −
√−1|µ|+l(µ)

|Aut(µ)| [τ(τ + 1)]l(µ)−1

∏l(µ)
i=1

∏µi−1
a=1 (µiτ+a)
(µi−1)! · ∫Mg,l(µ)

Λ∨
g (1)Λ∨

g (−τ−1)Λ∨
g (τ)∏l(µ)

i=1(1−µiψi)
,



and generating series

Gµ(λ; τ) =
∑

g≥0 λ2g−2+l(µ)Gg,µ(τ).

Special case when g = 0:

∫
M0,l(µ)

Λ∨
0(1)Λ∨

0(−τ−1)Λ∨
0(τ)∏l(µ)

i=1(1−µiψi)
=
∫
M0,l(µ)

1∏l(µ)
i=1(1−µiψi)

which is equal to |µ|l(µ)−3 for l(µ) ≥ 3, and we

use this expression to extend the definition to

the case l(µ) < 3.

Introduce formal variables p = (p1, p2, . . . , pn, . . .),

and define

pµ = pµ1 · · · pµl(µ)

for any partition µ.

Generating series for all genera and all possible

marked point:



G(λ; τ ; p) =
∑

|µ|≥1 Gµ(λ; τ)pµ.

Representation side:

χµ: the character of the irreducible representa-

tion of symmetric group S|µ| indexed by µ with

|µ| = ∑
j µj,

C(µ): the conjugacy class of S|µ| indexed by µ.

Introduce:

Vµ(λ) =
∏

1≤a<b≤l(µ)
sin[(µa−µb+b−a)λ/2]

sin[(b−a)λ/2]

· 1∏l(ν)
i=1

∏µi
v=1 2 sin[(v−i+l(µ))λ/2]

.

This has an interpretation in terms of quan-

tum dimension in Chern-Simons knot theory.



Define

R(λ; τ ; p) =
∑

n≥1
(−1)n−1

n

∑
µ[(

∑
∪n

i=1µi=µ

∏n
i=1

∑
|νi|=|µi|

χ
νi(C(µi))

z
µi

e
√−1(τ+1

2)κνiλ/2Vνi(λ)]pµ

where µi are sub-partitions of µ, zµ =
∏

j µj!j
µj

and κµ = |µ| +∑
i(µ

2
i − 2iµi) for a partition µ:

standard for representations.



Mariño-Vafa Conjecture:

G(λ; τ ; p) = R(λ; τ ; p).

Remark: (1). This is a formula:

G: Geometry = R: Representations

Representations of symmetric groups are es-

sentially combinatorics.

(2). Each Gµ(λ, τ) is given by a finite and

closed expression in terms of representations

of symmetric groups:

Gµ(λ, τ) =
∑

n≥1
(−1)n−1

n (
∑

∪n
i=1µi=µ

∏n
i=1

∑
|νi|=|µi|

χ
νi(C(µi))

z
µi

e
√−1(τ+1

2)κνiλ/2Vνi(λ)



Gµ(λ, τ) gives triple Hodge integrals for moduli

spaces of curves of all genera with l(µ) marked

points.

(3). Mariño-Vafa: this formula gives values for

all Hodge integrals up to three Hodge classes.

Taking Taylor expansion in τ on both sides,

various Hodge integral identities have been de-

rived by C.-C. Liu, K. Liu and Zhou.

Idea of Proof:(Chiu-Chu Liu, Kefeng Liu, Jian

Zhou)

The proof is based on the Cut-and-Join equa-

tion: a beautiful match of Combinatorics and

Geometry.

Cut-and-Join: The combinatorics and geom-

etry:



Combinatorics: Denote by [s1, · · · , sk] a k-

cycle in the permutation group:

Cut: a k-cycle is cut into an i-cycle and a j-

cycle:

[s, t] · [s, s2, · · · , si, t, t2, · · · tj]

= [s, s2, · · · , si][t, t2, · · · tj].

Join: an i-cycle and a j-cycle are joined to an

(i + j)-cycle:

[s, t] · [s, s2, · · · , si][t, t2, · · · tj]

= [s, s2, · · · , si, t, t2, · · · tj].



Geometry:

Cut: One curve split into two lower degree or

lower genus curves.

Join: Two curves joined together to give a

higher genus or higher degree curve.

The combinatorics and geometry of cut-and-

join are reflected in the following two differen-

tial equations, like heat equation:

proved either by direct computations in com-

binatorics or by localizations on moduli spaces

of relative stable maps (Jun Li):



Combinatorics: Computation:

Theorem 1:

∂R

∂τ
=

1

2

√−1λ
∞∑

i,j=1

(
(i + j)pipj

∂R

∂pi+j

+ijpi+j

(
∂R

∂pi

∂R

∂pj
+

∂2R

∂pi∂pj

))

Geometry: Localization:

Theorem 2:

∂G

∂τ
=

1

2

√−1λ
∞∑

i,j=1

(
(i + j)pipj

∂G

∂pi+j

+ijpi+j

(
∂G

∂pi

∂G

∂pj
+

∂2G

∂pi∂pj

))

Initial Value: Ooguri-Vafa formula

G(λ,0, p) =
∞∑

d=1

pd

2d sin
(

λd
2

) = R(λ,0, p).



The solution is unique! Series of homoge-

neous ODE:

G(λ, τ, p) = R(λ, τ, p)

Remark: (1). Cut-and-join equation is more

fundamental: encodes both geometry and com-

binatorics: Vafa: Virasoro operators come out

of the cut-and-join.

(2). Witten conjecture is about KdV equa-

tions. But the Marinõ-Vafa formula gives closed

formula!

The proof of the combinatorial cut-and-join

formula is based on Burnside formula and var-

ious results in symmetric functions.

The proof of the geometric cut-and-join for-

mula used functorial localization formula.



Let Mg(P1, µ) denote the moduli space of rel-

ative stable maps from a genus g curve to P1

with fixed ramification type µ at ∞, where µ is

a partition.

Apply the functorial localization formula to the

divisor morphism from the relative stable map

moduli space to projective space:

Br : Mg(P1, µ) → Pr,

where r denotes the dimension of Mg(P1, µ).

This is similar to the set-up of mirror principle,

with a different linearized moduli.

The fixed points of the target Pr precisely

labels the cut-and-join of the triple Hodge in-

tegrals.

Applications: Computing GW invariants on

Toric Calabi-Yau:



Physical approaches: Aganagic-Mariño-Vafa (2002):

BPS numbers for toric Calabi-Yau by using

large N dulaity and Chern-Simons invariants.

Aganagic-Klemm-Mariño-Vafa (2003): Topo-

logical vertex. Complete formula for compu-

tations of GW invariants and BPS numbers:

Chern-Simons. (BPS numbers are related to

GW invariants by Gopakumar-Vafa formula.)

Iqbal’s instanton counting in terms of Chern-

Simons.

Mathematical approach (Jian Zhou): Mariño-

Vafa formula can be used to compute BPS

numbers (which are conjectured to be inte-

gers by Gopakumar-Vafa) for toric Calabi-Yau

3-fold.

Re-organize contributions of fixed points as

combinations of Mariño-Vafa formula.



Recovered the formula of Iqbal (based on a

two partition generalization of the MV formula,

proved by them).

The topological vertex is the three partition

generalization.

The physical and mathematical approaches should

be equivalent:

Bridge: The Mariño-Vafa formula: which

can be viewed as a duality

Chern-Simons ⇐⇒ Calabi-Yau.



(4). SYZ Conjecture and Duality.

Strominger-Yau-Zaslow proposed the construc-

tion of the mirror manifold by looking at spe-

cial Lagrangian torus fibration. The mirror

manifold is obtained by taking duality along

the torus. (There is a parallel development by

Kontsevich and Fukaya on homological mirror

conjecture).

Similar construction is proposed for other man-

ifolds with special holonomy group. (Acharya,

Vafa, Gukov-Yau-Zaslow, Leung...)

The SYZ construction is based on the newly

developed M-theory. Therefore the geomet-

ric construction has support from intuition of

physics. The complicated question of singular-

ities should be solvable.



T3

��

M ×S3 M ′

��������������

���������������
(T3)∗

��

M

���������������� M ′

�������������������

S3

The above diagram allows us to transfer ob-

jects from M to M ′ and vice-versa. This is a

kind of Fourier-Mukai transformation.

Special Lagrangian cycles from M should be

mapped to stable holomorphic bundles over

M ′, and coupling should be preserved. (Vafa,

Leung-Yau-Zaslow for the case with no instan-

ton correction)



The map sends odd cohomology of M to even

cohomology of M ′:
M ×S3 M ′

π1

�������������� π2

�������������

M M ′

H3(M) → H3(M ×S3 M ′)
Ω �→ π∗

1Ω

H3(M ×S3 M ′) → H3(M ×S3 M ′)
ω �→ ω exp(c1(L))

H3(M ×S3 M ′) → Heven(M ′)
ω �→ (π2)∗ω



Many interesting questions arise in the SYZ

construction. Most of the geometric quantities

including complex structure and Ricci flat met-

rics will require quantum corrections from

disk instantons. (There is a background semi-

flat Ricci flat metric given by cosmological string

construction.)

How to compute such instantons are nontrivial.

Works by Katz-Liu, Li-Song, Graber-Zaslow

and others are making progresses on the im-

portant questions. Generalizations to G2 and

Spin(7) are interesting.

The important question is to interpret the lo-

calization results in terms of the picture of T -

duality along the fibers.



In the fibration

T3 −→ M⏐⏐⏐�
S3

there is a singular locus in S3 where T3 col-

lapses. The singular locus is expected to look

like a graph Γ. In S3 \ Γ, there exists a locally

real affine structure (introduced by Cheng-Yau,

1989). In each affine coordinate, there is a

convex potential u so that the metric is given

by

gij =
∂2u

∂xi∂xj
.

We require det(gij) =const. There is pre-

scribed singular behaviour of gij along Γ. In

general Γ is trivalent and the detailed singu-

lar structure at the vertices should be related

to the topological vertex (Aganagic-Klemm-

Mariñ0-Vafa, hep-th/0305132). Zaslow-Yau is

working on this singular structure.


