
Raoul Bott is one of the outstanding re-
searchers in geometry and topology in recent
times. He has made important contributions

to topology, Lie group theory, foliations and char-
acteristic classes, K-theory and index theory, and
many other areas of modern mathematics. One of
his most spectacular successes was the application
of Morse theory to the study of the homotopy
groups of Lie groups, which yielded the Bott peri-
odicity theorem. This central result has reappeared
in many other contexts, including several versions
of K-theory and noncommutative geometry.

Raoul Bott was born on September 24, 1923, in
Budapest, Hungary. At McGill University he earned
a bachelor’s degree in 1945 and a master’s degree
in 1946, both in engineering. He then switched to
mathematics and received his Sc.D. from the
Carnegie Institute of Technology (now Carnegie
Mellon University) in 1949. He spent the next two
years at the Institute for Advanced Study in Prince-
ton. From 1951 to 1959 he was at the University
of Michigan, except for a stay at the Institute dur-
ing 1955–57. In 1959 he accepted a professorship
at Harvard University. He retired from Harvard in
1999. His honors include the AMS Oswald Veblen
Prize (1964), the National Medal of Science (1987),
the AMS Steele Prize for Lifetime Achievement
(1990), and the Wolf Prize (2000).
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Notices: First let’s talk a little bit about your
early background. You had an unconventional ed-
ucation, and when you were a youngster you were
not especially distinguished in mathematics.

Bott: That’s putting it mildly!
Notices: But looking back now, do you see some

experiences from that time that put you on the
path to becoming a mathematician?

Bott: Well, I’ve always thought my interest in
electricity was a manifestation of trying to un-
derstand something, but it certainly wasn’t math-
ematics. When I was about twelve to fourteen
years old, a friend and I had fun working with elec-
tricity, and it was really a collaboration. We had
a lab where we tried to make very primitive things,
such as a microphone. We enjoyed creating
sparks, and we wanted to know how gadgets
work. So I think this was closest to what really
makes a mathematician—someone who likes to
get at the root of things.

Allyn Jackson is the senior writer and deputy editor of 
the Notices. Her e-mail address is axj@ams.org. The 
assistance of Dieter Kotschick, Ludwig-Maximilians-
Universität München, who provided mathematical help
with the interview, is gratefully acknowledged.

This is the edited text of two interviews 
with Raoul Bott, conducted by Allyn Jackson 
in October 2000.

Bott at McGill University, about 1942.
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Notices: This was much more practical than
your mathematics is.

Bott: Yes, it was definitely practical, and, al-
though I wasn’t so very good at it, I enjoyed work-
ing with my hands. I always said later on that I
would have liked to live in the day of Marconi. I
would have loved to invent things in a small lab,
discover the basic properties of electromagnet-
ism. I think that would have been wonderful.

Notices: In mathematics you worked in pretty
pure areas; you didn’t work in applied areas.

Bott: Well, after I got my degree in engineering,
I went into applied mathematics. I solved a quite
famous problem with my thesis director, Richard
Duffin. The result is now called the Bott-Duffin the-
orem [1]. It was practical and was put to use by Bell
Labs for a while.

Notices: What did this theorem allow them to do?
Bott: This problem had to do with building fil-

ters. In those days one didn’t have transistors, so
if one made electric circuits, one had only very stan-
dard objects: resistors, capacitors, and coils. If
these elements are hooked up in an arbitrary fash-
ion and placed into a “black box”—as it was called—
so that one has only two terminals showing, then
the steady-state frequency response of such a net-
work is determined by a rational function of the
frequency, called the “impedance” of the box. And
because such a box contains no energy sources, this
impedance has the crucial property that it maps
the right half of the complex number plane into
itself. So the mathematical problem was: Given
such a rational function, can one build a black box
for it? This was a very natural question, because
the frequency response in a filter is the important
thing: one wants certain frequencies to go through
and others to be blocked.

This problem had fascinated me when I was at
McGill, and I brought it to Carnegie Tech with me.
In my first interview with Duffin I immediately di-
vulged it to him, and he became interested. Actu-
ally, the problem had been nearly solved by Brune,
who was a South African engineer, many years be-
fore. He had given an inductive procedure for
building a black box, starting from such a rational
function. Unfortunately, at one step in his proce-
dure he had to introduce an “ideal transformer”.
His procedures were quite feasible, except for this
one step. In practice, your black box would become
as big as a house to accommodate an ideal trans-
former! So my dream was to get rid of these ideal
transformers at the cost of making a more com-
plicated network. And that is precisely what Duf-
fin and I managed to do. This work wasn’t my the-
sis, but it was much more interesting than my
thesis, and it started my career, no question about
it. The engineers were amazed, because they had
written wrong papers on the subject for twenty
years. Hermann Weyl heard about it when he

visited, and I am sure it was this theorem that
brought me to the Institute in 1949.

Notices: Were you aware of the literature that
the engineers had written?

Bott: No. Duffin and I didn’t like to search
through literature. We still don’t! We thought one
should be able to get rid of the ideal transform-
ers, and we knew these other papers didn’t do
that. There is a tremendous literature in the math-
ematical world about functions that map the upper
half-plane into itself—the moment problem—but
nothing in those papers actually helped. The final
proof of the theorem was really quite easy once we
learned of a theorem of I. R. Richards in abstract
complex variable theory. I recently asked my friend
and colleague Curt McMullen to provide a proof for
this Richards theorem, and he produced a purely
algebraic proof from the Schwarz lemma, very in-
geniously applied. The original version of the the-
orem seemed more complicated.

What I like about this work with Duffin is that
it also brought about a wonderful moment of col-
laboration. We had been working on our problem
with the Richards formula all afternoon, and it
didn’t seem to work. We then went home, and on
the way I saw that of course it did work! So rush-
ing home, I immediately called him up, but his
phone was busy. He was calling me with the same
insight!

Notices: What area of mathematics was Duffin
working in?

Bott: He was a jack of many trades. He was a
physicist to start with, and I liked to tease him that
he did applied mathematics the wrong way around.
He would take his physical intuition and try to
make it mathematics.

Notices: Why is that the “wrong way around”?
Bott: Well, ideally, the physicists would like to

have mathematics predict nature. There is some-
thing more exciting if you predict, in terms of
mathematical ideas, a phenomenon that was un-
expected. So I used to think of it as the wrong way

E. Pitcher, Johnson (first name unknown), R. Bott,
H. Samelson, J. Nash, H. Rauch, 1956 AMS Confer-
ence in Seattle.
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around. But Duf-
fin was definitely
a master at it.
And of course, as
I said, he worked
in many different
areas. For in-
stance, there is
something called
the Duffin basis
in physics for
spinors. He had
also worked ex-
tensively in com-
plex variable the-
ory. He was an
artist in a way. He

wrote beautifully written, short papers. He was
not a specialist at all, and that impressed me
from the start.

Notices: You wrote in a Notices article that you
tried to emulate his way of being a “mathemati-
cal samurai”.

Bott: Yes, that’s the point. It’s the problem you
go after rather than the field. You have to trust
your instincts and hope that sometimes you will
hit upon a subject to which you can maybe make
a contribution.

Notices: Did you come into contact with John
Nash at Carnegie Tech?

Bott: Yes, indeed. He was in my class. In fact,
in this class there was Nash and also Hans Wein-
berger, a very good applied mathematician now
at Minnesota, and maybe two or three others.
Duffin was teaching us a very amusing course on
Hilbert spaces. One of Duffin’s principles was
never to prepare a lecture! So we were allowed to
see him get confused, and part of the fun was to
see whether we could fix things up. We were read-
ing von Neumann’s book on quantum mechanics,
which developed Hilbert spaces at the same time.
And it soon became clear that Nash was ahead of
all of us in understanding the subtleties of infi-
nite-dimensional phenomena.

Notices: Was he an undergraduate?
Bott: He was an undergraduate, yes, and the

rest of us were graduate students. I was friends
with Nash; he didn’t have any close friends, re-
ally, but we often talked about this and that.
When he later got sick and had a really bad bout,
he would sometimes send me a postcard with
some very strange associations, usually with re-
ligious overtones. My closest contact with John
was at Carnegie Tech. When I came to the Insti-
tute in Princeton, he came to Princeton as a grad-
uate student, and then I only saw him casually.
Later when he came to MIT and started his work
in geometry, I unfortunately wasn’t at Harvard yet.
I would have been glad to have been part of the
development of geometry by Ambrose and Singer
at MIT at that time. However, this whole devel-
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opment turned Nash off. Eventually he went to Am-
brose and asked for a “real problem”. And then of
course Nash proved his remarkable embedding
theorems. But I was at Michigan at that time. Un-
fortunately, Nash’s great gifts were marred by his
terrible disease.

Notices: After Carnegie Tech, you went to the In-
stitute in 1949. You had been doing things associ-
ated with engineering up to that point. How did your
perspective on mathematics change when you went
to the Institute?

Bott: Well, I felt like a kid in a candy store. First
of all, the people around me were so outstanding!
It was a sort of Valhalla, with all these semigods
around. Amazingly enough, we mathematicians
have a type of negative feedback built into us: If
we don’t understand something, it makes us want
to understand it all the more. So I went to lectures,
most of them completely incomprehensible, and
my gut reaction was: I want to understand this. Os-
tensibly I was at the Institute to write a book on
network theory, but after I found out I didn’t have
to do that, I went to an incredible number of lec-
tures and just absorbed the atmosphere. I didn’t
write a single paper in my first year there. So I was
very delighted when Marston Morse called me up
at the end of that year and said, “Do you want to
stay for another year?” And I said, “Of course,
yes!” He said, “Is your salary enough?” It was $300
a month. I said, “Certainly!” because I was so de-
lighted to be able to stay another year. My wife took
a dimmer view! But we managed.

Notices: So this was a big change for you, to go
from an environment where you had been work-
ing on the engineering side to a place where there
was so much mathematics.

Bott: I didn’t think of it that way.
Notices: It wasn’t such a contrast for you?
Bott: No, because the actual work is just the

same. When I worked with Duffin, it was mathe-
matical thought; only the concepts were different.
But the actual finding of something new seems to
me the same. And you see, the algebraic aspects
of network theory were an ideal introduction to dif-
ferential geometry and the de Rham theory and to
what Hermann Weyl was studying at the time, that
is, harmonic theory. In effect, networks are a dis-
crete version of harmonic theory. So when I came
to the Institute, the main seminar I attended was
Hermann Weyl’s, and Kodaira and de Rham were
lecturing on harmonic forms. Weyl wanted to have,
finally in 1949, a proof of Hodge’s theorem that
he could live with. Hodge’s theorem was proved in
the 1930s, but in a somewhat sloppy way. The de-
tails were cleaned up in this seminar by two quite
different people from different points of view. So
this didn’t seem strange to me; it was within my
domain of thinking. It then led to topology, and
there my course with Steenrod was the dominant
experience for my future development.

Raoul Bott lecturing at Universität Bonn,
1969.
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Notices: In your collected works Paul Baum wrote
some reminiscences about working with you. One
of the things he said he learned, or relearned, from
you is that there is a mainstream to mathematics
and that certain mathematicians like you under-
stand instinctively what that mainstream is. How
does one come to understand what that mainstream
is? You’re born with it? You learn it? You pick it up
from the environment?

Bott: A good point. I must say I always followed
my taste. And sometimes my taste led me in di-
rections that weren’t fashionable but that luckily
turned out to be fashionable later on! But these
things are dangerous, the fashions change, and it’s
hard to tell in retrospect whether you were in the
mainstream. I was just very affected by the early
development of sheaf theory, and especially the
combination of analysis with topology that then en-
sued. Suddenly complex variable theory fitted in
with topology and even certain aspects of number
theory. So I think that at that time it was very easy
to discern this development as a main road in
mathematics.

But I’ve seen the mainstream change consider-
ably over my lifetime. For instance, if I think of
Princeton before sheaf theory, the emphasis was
very different. When I first came there, much of
topology in those early years had to do with very
abstract questions of pathological spaces, com-
paring fifteen different cohomology theories, and
such. This was what I would have said at first was
the mainstream. Then topology moved more to
what I felt was the real world: the study of com-
pact manifolds and their invariants. Lower-di-
mensional topology was not emphasized then, but
in the 1990s it came to the fore again. So there is
really a tremendous difference in perspective over
the years.

Notices: But isn’t there a core of mathematics that
is vital and lively, independent of fashion, and there
are other fields that are more outlying; and one
needs a sense of what is central and what perhaps
is not so central?

Bott: I don’t know to what extent I believe this.
I think, for instance, that Bourbaki had that feel-
ing, and I was always a little skeptical of Bourbaki.
The subject is just too big. It doesn’t just have one
main road. There are too many unsuspected
branches. So although I was in a sense very much
influenced by Bourbaki, I don’t really subscribe to
the belief that there is just one way of looking at
things. An example is what’s happening in physics
and mathematics right now. Physicists with a com-
pletely different intuition come up with things
that we now find very fascinating. I believe in the
virtue of quite different cultures affecting mathe-
matics. If you had one really good main highway,
it would be dangerous, because then everybody
would be marching along it!

Notices: When you were
in Princeton, was there any
activity in relativity, or was
Einstein working by him-
self?

Bott: When I came to the
Institute, Oppenheimer had
taken over, and he was very
dominant in the physics
community. He had a sem-
inar that every physicist
went to. We mathemati-
cians always thought they
ran off like sheep, for we
would pick and choose our
seminars! I felt that Einstein
was pretty isolated, yes. I’m
very surprised that in my
own case I did not make a
big effort to get close to
him, because he had always been my hero, and as
a young boy I wanted nothing more than to un-
derstand relativity. Also, we both liked the same
music, we spoke the same languages—it would
have been too easy to become a groupie. We had
one or two exchanges, but they were always, “How
do you do, the weather is nice....” However, at the
Institute, I was much more interested in topology.
And in a way, it’s just as well, because what he was
working on then has not been very helpful.

Notices: That’s interesting that you had so much
in common with Einstein, and you could have got-
ten to know him more, but you didn’t do that in part
because you had so much in common with him. You
wanted something different?

Bott: Einstein had an assistant before I arrived
there, John Kemeny, who later became president
of Dartmouth. Kemeny was Hungarian, like me. In
fact, once Hermann Weyl mistook me for Kemeny,
and I didn’t want to become the second Kemeny!
Maybe I am not very well cut out to be a disciple.
And also, as I said, I was fascinated by topology.

At the Institute I had a marvelous tutor in topol-
ogy in Ernst Specker. He was and is quite a salty
character, and we got along famously. Ernst was
a student of Heinz Hopf, and unfortunately—from
my point of view—he eventually moved into logic.
Reidemeister was lecturing to a small group, in-
cluding me and Specker, on new things that Car-
tan was doing at the time. Reidemeister spoke in
a fluent mixture of half English and half German,
but for Specker and me this was not a problem, and
those sessions were an inspiration to me.

From the Institute I went to Michigan and met
Hans Samelson, who was also a student of Hopf.
Samelson was a real master of geometry and Lie
group theory. I learned a lot from him during the
years we worked together. But again, it was a par-
ticular problem that brought me into Lie group the-
ory rather than wanting to learn an area.

Bott, 1972.
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Notices: If problems get you to learn
about an area of mathematics, what guides
you in your choice of problems?

Bott: It’s hard to say. As in music, one
falls in love with different things at dif-
ferent times. Right now for me it’s the 4th
partita of Bach. What brings on these im-
pulses is hard to say.

Notices: Is there impetus in the opposite
direction, that is, things you don’t like in
mathematics?

Bott: Often I don’t like the way mathe-
matics is presented. I like the old way of
presenting things with an example that
gives away the secret of the proof rather

than dazzling the audience. I can’t say that there
is any mathematics that I don’t like. But on the
whole I like the problems to be concrete. I’m a bit
of an engineer. For instance, in topology early on
the questions were very concrete—we wanted to
find a number!

Notices: Are you a geometric thinker? Do you vi-
sualize things a lot when you do mathematics?

Bott: My memory is definitely visual, but I also
like formulas. I like the magical aspects of classi-
cal mathematics. My instinct is always to get as ex-
plicit as possible.

In most of my papers with Atiyah he would
write the final drafts and his tendency was to make
them more abstract. But when I worked with Chern,
I wrote the final draft. Chern actually wrote a more
down to earth version of our joint paper. 

Notices: Is Chern even more of a “formulas man”
than you are?

Bott: Oh, yes. I’m pretty bad, but he is even
worse! It’s strange that in some sense it was he who
taught us to work conceptually, but in his own work
his first proofs are nearly always computational.

Notices: Can you talk about some of your favorite
results, things that you have a special fondness
for?

Bott: I told you already about the first one, the
work with Duffin. That was, I think, a nice piece
of work and great fun to do. Later I was very for-
tunate to be the first to notice that the loop space
of a Lie group is very easily attacked with Morse-
theoretic methods [8]. It turns out that if you look
at the loop space rather than at the group, then the
so-called diagram of the group on the universal cov-
ering of its maximal torus plays an essential role.
So you can read off topological properties of the
loop space much more easily from the diagram of
the group than you can read off things about the
group itself. This insight was exciting. I found this
relation sometime in the early 1950s at Michigan,
and it is still one of my favorite formulas.

Now, the sad part of that story is that, if I had
been as gifted and as thorough as Serre or some-
body like that, I would have immediately discov-
ered the periodicity theorem there and then. Well,
not right then, but certainly during my subsequent

work with Samelson, where we extended this in-
sight on the loop space of a group to the larger class
of symmetric spaces [22]. The techniques we
learned there were all I needed for the periodicity
theorem. But it took a few more years for the ap-
propriate context to develop. This occurred in
1955–57, when I returned to the Institute.

During that period there was a controversy in
homotopy theory. The question concerned the 
homotopy group of the unitary group in 
dimension 10. The homotopy theorists said it 
was Z3 . The results of Borel and Hirzebruch 
predicted it to be 0. This contradiction intrigued
me, and I thought I should be able to say some-
thing about it using the Morse-theoretic techniques
that Samelson and I had discovered. Finally I 
hit upon a very complicated method involving the
exceptional group G2 to check the conundrum 
independently. My good friend Arnold Shapiro and
I spent all weekend computing. At the end we
came out on the side of Borel and Hirzebruch, so
I was convinced that they were right. And if they
were right, the table of homotopy groups started
to look periodic for a long stretch. In the odd 
dimensions they were Z up to nine dimensions, and
in the even dimensions they were 0. So I thought,
“Maybe they are periodic all the way.” I remember
suggesting this to Milnor. Well, Milnor doesn’t like
bombastic conjectures! He likes to be on firmer
ground. And fairly soon after I saw that my old
ideas would actually do the job.

In this way the unitary group was then settled.
Then I started to think about the orthogonal group,
and that was much harder. But I do remember pre-
cisely when I suddenly saw how to deal with it. That
occurred after we had left the Institute and were
moving house. You know how it is in mathemat-
ics: one suddenly understands something while one
is unpacking one’s books or doing something
equally innocuous. In a flash I saw how it all fit-
ted together [24].

Notices: From what you said, the periodicity the-
orem was hidden from everybody because of those
mistakes in the original calculations. Nobody could
have conjectured it.

Bott: Yes, especially the topologists and homo-
topy theorists who were led in a quite different di-
rection by attacking the problem with the gener-
ally accepted method. On the other hand, I had the
good luck of doing homotopy theory via Morse the-
ory, which provided a quite different approach.

So that was really a high point, but it was a
purely homotopy-theoretic result. By that time,
the latter 1950s, I’d been invited to Bonn, and I had
met Hirzebruch and learned all this wonderful
stuff with the Riemann-Roch theorem, and those
ideas started to fascinate me very much. Actually,
that same year at the Institute I wrote a paper that
I also like and that has been influential. It’s called
“Homogeneous vector bundles” [15], and it

Bott and Michael
Atiyah on the

Rhine River, 1984.
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computes the holomorphic cohomology of certain
homogeneous spaces in a nice way. This paper
was clearly influenced by what I learned at the In-
stitute in 1956 from Borel, Hirzebruch, Serre, and
Singer. The Riemann-Roch theorem conjectured
something that I then proved on the actual coho-
mology level.

Notices: The Riemann-Roch theorem just gives
the alternating sum of the dimensions. You com-
puted each one individually in that case.

Bott: Yes. I related first of all the cohomology
to some Lie algebra cohomology, and that was
then very much more thoroughly investigated by
Kostant later on. So there are various versions of
this theory.

Notices: That is what’s called the Bott-Borel-Weil
theorem.

Bott: Yes. Then the next development was that
Grothendieck came on the scene and influenced all
of us tremendously. One day I received a paper
from Atiyah and Hirzebruch about a generalized
cohomology theory, now called topological
K-theory. That paper was a revelation. Their ap-
proach had never occurred to me. It fitted in with
the periodicity theorem but gave a completely new
way of interpreting my computations. This was the
start of my long and wonderful collaboration with
Michael Atiyah. We first of all gave a new proof of
the periodicity theorem which fitted into th 
K-theory framework [35]. Over the years he and var-
ious people have found more and more ways of
doing this, completely different from my Morse the-
ory way. K-theory then took off, and it was great
fun to be involved in its development. Many famous
old problems that had been difficult could be
solved easily in K-theory. You see, in most coho-
mology theories, natural operations are hard to find
and difficult to compute. But in K-theory, because
you are dealing with vector bundles, exterior pow-
ers are very natural, and computing with them in
this new setting turned out to be very effective.

In the early 1960s Atiyah and I were at Stanford,
and we went to a cocktail party. Hörmander was
there too. That was when I first heard the term
index used in the sense that it’s generally used in
analysis, that is, as the index of an operator. I re-
member Michael was very, very interested in dis-
cussing the index with Hörmander. He stopped
drinking and just talked to Hörmander. (But I con-
tinued my drinking. In fact, I was very nearly ar-
rested that evening by a police officer! Luckily, I
was able to squirm out of it.) Suddenly the Rie-
mann-Roch theorem had taken a new turn. Hirze-
bruch’s first run at it involved cobordism theory
and all this beautiful algebraic geometry, and the
index theorem of Hodge was the link between the
topology and the analysis. That was very beauti-
ful. Then Grothendieck, in the purely algebraic
context, gave a completely different proof using
his K-theory in the formal, algebraic way. Now

suddenly from the index point of view there
seemed to be yet another approach to the same
problem. Before, we had taken complex analysis
or algebraic geometry as a given, so that the dif-
ferential operator was hidden. Whereas here, sud-
denly the topological twisting of the differential op-
erator came into the equation. Of course, Atiyah
and Singer immediately realized that this twisting
is measured with the homotopy groups of the clas-
sical groups, by the so-called symbol. Eventually
the whole development of index theory fitted the
periodicity theorem into the subject as an integral
part. Atiyah very rightly chose Singer to collabo-
rate on this project. I was working in a very dif-
ferent direction. I wanted to look at local funda-
mental solutions of differential equations and use
them as the tool for proving the index theorem, as
it was called, by patching these together in the
“Čech manner”.

In 1964 Michael and I were together again in
Woods Hole, at an algebraic geometry conference.
By that time, we had learned to define an elliptic
complex, and we now saw the old de Rham theory
in a new light: namely, that it satisfied the natural
extension to vector bundles of the classical notion
of ellipticity for a system of partial differential
equations. During that conference we discovered
our fixed point theorem, the Lefschetz fixed point
theorem in this new context [42], [44]. This was a
very pleasant insight. The number theorists at first
told us we must be wrong, but then we turned out
to be right. So we enjoyed that!

In a way, I always thought of the Lefschetz the-
orem as a natural first step on the way to the index
theorem. You see, in the index theorem you com-
pute the Lefschetz number of the identity map. The
identity map has a very large fixed point set. So if
you have the idea that the Lefschetz number has
to do with fixed points, then of course it’s much
easier to first try and prove the Lefschetz theorem
for a lower-dimensional fixed point set. The fixed
point theorem we proved in Woods Hole dealt pre-
cisely with the case in which the fixed point set was
zero dimensional. Over the years I’ve encouraged
people to study it over bigger and bigger fixed

60th birthday conference of M. Atiyah, Oxford, 1989. 
With Bott on left: Lily Atiyah, on right: Rosemary Zeeman.
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point sets and approach the final answer in this
way. The analysis needed for the Lefschetz theo-
rem in the case that we studied is very simple
compared to the analysis needed for the true index
theorem. Nevertheless, this special case fitted in
nicely with many things, and we could use it also
to prove some theorems about actions of finite
groups on spheres and so on.

The next piece of work that I enjoyed very much
was around 1977, when I came back from India and
visited Atiyah in Oxford. During that visit I became
aware of a new and exciting relationship between
mathematics and physics. In this atmosphere we
started to think about the problem of stable bun-
dles over Riemann surfaces in terms of gauge the-
ory. We had two ideas: first, that one had to use
an equivariant version of Morse theory to tackle
this problem. And second, that one then had to get
at the final answer by a subtraction process. The
salient feature of this work was that
in the equivariant Morse theory the
absolute minimum plays a very spe-
cial role, in the sense that the higher
critical points tend to be “self-com-

pleting”. This
paper [81] had
connections to
various other
fields. On the one
hand, it related to
the stability the-
ory of Mumford,
and on the other,
it had relations to
the moment map
and work of
Guillemin and
Sternberg. It was even related to
some work of Harder and
Narasimhan in number theory.

In recent times some-
thing that Atiyah and I
discovered in the 1980s
has been put to a lot of
good use. It is called the
equivariant fixed point
theorem. Just recently it
led to proofs of the so-
called mirror conjecture
in certain instances in the
work of both the Russian
and the Chinese schools.

But let me brag about
another theorem! The
question here had to do
with foliations. A foliation
is a subbundle of the tan-
gent bundle that satisfies
an integrability condition.
To see the topological

implication of that integrability condition seemed
to me to be a very fascinating subject, and it still
seems so today. In the late 1960s I was giving a
course on characteristic classes, and, as is usual
with me, I started from scratch, because I don’t have
notes and I don’t like to read books. I did it slightly
differently that time, because I was very influ-
enced by the ideas of Haefliger. And then I soon
noticed that integrability has a topological conse-
quence. If you have a vector bundle that is a sub-
bundle to the tangent bundle, then in its isomor-
phism class there’s a definite obstruction to
deforming it into an integrable one. A certain van-
ishing condition has to be satisfied by its charac-
teristic classes. This work [52] then naturally led
to the exotic characteristic classes of foliations, that
is, generalizations of the Godbillon-Vey invariant,
which were also discovered independently by
Joseph Bernstein at the same time. I worked in this
area with André Haefliger [56] for many years, and

this was also a wonderful collabo-
ration.

Notices: Had you encountered him
at the Institute?

Bott: I did meet him in Princeton,
but we were never both in residence
there at same time. By the way, this
whole area is also related to the so-
called Gelfand-Fuks cohomology.
Graeme Segal, with a little help from
me, proved that actually this
Gelfand-Fuks cohomology turns out
to be a homotopy-invariant functor.
Independent proofs were also given
by others, including André. An ex-
citing development in this area
turned out to be the examples of

Thurston, which showed that you could have patho-
logical foliations. My work at that time was very
much influenced by Graeme Segal and his ideas on
simplicial spaces.

Notices: In your work with Duffin there were a
lot of engineering papers that were wrong, but you
were at first not aware of them. Later, the homo-
topy theorists made mistakes in their calculations,
but this did not prevent you from finding the right
answer. Do you think that, for example, had you
known about the engineering papers, they would
have stopped you from proving your theorem with
Duffin?

Bott: That could very well have been. If either
Duffin or I had researched the literature well enough,
we would have found insurmountable problems! Al-
though I think of myself as a rather sloppy guy, I have
found errors quite often. So I’m skeptical. I do like
to see the nitty-gritty of the proof. I like to under-
stand things very much in detail. Sometimes my stu-
dents get mad at me. A thesis has to be rewritten until
it’s an open book, so to speak. Otherwise I’m too stu-
pid to understand it!

Bott at his 70th birthday celebration
at Harvard, 1993.
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Notices: Your work has
touched on a lot of different
areas: topology, geometry,
Lie groups, PDEs, analysis.
But not number theory.
Have you ever been inter-
ested in number theory?

Bott: Secretly, yes! In
fact, I’m leaning in that di-
rection right now. I’m in-
terested in the papers of
Candelas, who is a physi-
cist. For example, he wrote
one paper called “Calabi-
Yau manifolds over finite
fields”. It really fascinated
me this summer, so maybe
in my old age…!

Notices: Will you try
your hand at the Millen-
nium Prize Problems? You could win a million in the
process.

Bott: No, I prefer doing the problems I dream
up myself.

Notices: What do you make of offering these big
prizes? Do you think it’s good for mathematics?

Bott: Well, we are to a certain extent snobs and
feel that there is something demeaning about
bringing huge sums of money into the game. But
on the other hand, it might bring some very gifted
people into mathematics. For instance, during the
Sputnik era the whole preoccupation with the Rus-
sians made theoretical subjects more exciting in
America. At that time a group of very brilliant peo-
ple went into mathematics. Today they might go
into biology. So I do feel that publicity for mathe-
matics is a good thing, but I wish it could be done
in a less materialistic way. However, America is a
pragmatic country and likes to look at the bottom
line.

Notices: Going back to physics, it seems as though
in mathematics, compared to physics, people are
more individualistic. In physics, there are “tastemak-
ers”; in mathematics, it’s not like that. It’s more di-
verse.

Bott: Thank God there are very good people in
so many diverse areas that we have many more
branches we can develop. This is true to a certain
extent in physics too. There are the solid state
people who don’t care about fancy new stuff; they
are fascinated by different aspects of physics. But
physics is still much more circumscribed than
mathematics. Physicists are in close contact with
experiments, and we don’t have this discipline.
Some people have found it disconcerting that we
are allowed to go so much in our own direction.
They think we have too much license! And I must
admit that my basic reaction to some mathemat-
ics lectures is, “Why in heaven’s name are they
doing this?!” But there are also very beautiful parts

of mathematics that are
not at all appreciated at
the moment and that I
think will come back at
some point.

Notices: What are you
thinking of there?

Bott: That’s hard to
predict. But often some
new development will at
the same time resurrect
old questions. However,
there are also more pes-
simistic points of view.
My friend Samelson al-
ways said, “Eventually
mathematics will run
out. We have been using
the same ideas, the

same basic things, for so long, eventually the oil
will be gone.” For example, Lie groups: you can trace
them back to very early origins, and we’ve cer-
tainly mined them tremendously in this century.
But I think there will always be some new slant that
will keep us going.

For the truth of the matter is that there are
tremendous mysteries out there, and their solution
will lead us in quite new and unexpected directions.
There was a show on TV yesterday about geysers
in Yellowstone Park in Wyoming. There are thou-
sands of these hot springs, where steam and water
escape. Biologists found that things live in this
boiling water! They found living things in a geyser—
in a very deep, black hole, without any light, at tem-
peratures and in chemical solutions that were con-
sidered anathema to life! So I do believe that the
universe will have enough for us to work on for a
long time.

I’m very glad I went into mathematics, and I’m
certainly surprised it worked out so pleasantly.
What’s so wonderful in our field is the tremendous
collaboration that goes on, that we enjoy showing
our wares to each other and that we by and large
don’t fight as much about it as in most other fields.
This is very rare, really; I think you don’t find it in
literature, or biology, or history. They don’t spend
half their time in other people’s lectures. We are
allowed to learn from each other, and although we
do give credit, we also often learn much more than
can be easily credited. With one offhand remark
we give away our insight of years of thinking, and
such a remark might illuminate a whole field or fit
into one’s brain just right to unlock some new in-
sight. We do this very generously with each other.
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About the Cover
The cover photograph captures Raoul Bott

at a characteristic moment, doing what he has
been very, very good at all his professional
life—explaining mathematics. It was Friedrich
Hirzebruch who brought the photograph to
our attention, and who sent along also a copy
of the article in the Unabhängige Westdeutsche
Landeszeitung of June 25, 1969, in which this
picture first appeared. According to that arti-
cle, Bott is lecturing to a group of undergrad-
uates about vector fields on manifolds, which
is not apparent from the picture itself.

The photographer was Wolfgang Vollrath,
now working at Leica Microsystems and then
in his third term as a physics student at the
University of Bonn. Dr. Vollrath writes, “At
that time I was attending a lecture course in
linear algebra given by Prof. Hirzebruch. He
used to organize once a year a symposium of
very high reputation at the Mathematisches In-
stitut of the University of Bonn. In 1969 Prof.
Hirzebruch had the great idea to ask some of
the symposium lecturers…to give readily com-
prehensible talks to the younger students.
One of the lecturers was Raoul Bott. Most fas-
cinating for the German students, however,
was not the lecture itself, but that he was
smoking…while he was talking and at the
same time writing and wiping on the black
board. This was inconceivable for German stu-
dents. We enjoyed it very much. I was sitting
in the audience with my camera and a tele-
photo lens on it and could hardly believe what
I was seeing.”

—Bill Casselman (covers@ams.org)
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